Движение по наклонной плоскости swf. Прямолинейное движение в горизонтальном направлении

На наклонной плоскости длиной 13 м и высотой 5 м лежит груз массой 26 кг. Коэффициент трения равен 0,5. Какую силу надо приложить к грузу вдоль плоскости, чтобы втащить груз? чтобы стащить груз
РЕШЕНИЕ

Какую силу надо приложить для подъема вагонетки массой 600 кг по эстакаде с углом наклона 20°, если коэффициент сопротивления движению равен 0,05
РЕШЕНИЕ

При проведении лабораторной работы были получены следующие данные: длина наклонной плоскости 1 м, высота 20 см, масса деревянного бруска 200 г, сила тяги при движении бруска вверх 1 Н. Найти коэффициент трения
РЕШЕНИЕ

На наклонной плоскости длиной 50 см и высотой 10 см покоится брусок массой 2 кг. При помощи динамометра, расположенного параллельно плоскости, брусок сначала втащили вверх по наклонной плоскости, а затем стащили вниз. Найти разность показаний динамометра
РЕШЕНИЕ

Чтобы удерживать тележку на наклонной плоскости с углом наклона α, надо приложить силу F1 направленную вверх вдоль наклонной плоскости, а чтобы поднимать вверх, надо приложить силу F2. Найти коэффициент сопротивления
РЕШЕНИЕ

Наклонная плоскость расположена под углом α = 30° к горизонту. При каких значениях коэффициента трения μ тянуть по ней груз труднее, чем поднимать его вертикально
РЕШЕНИЕ

На наклонной плоскости длиной 5 м и высотой 3 м находится груз массой 50 кг. Какую силу, направленную вдоль плоскости, надо приложить, чтобы удержать этот груз? тянуть равномерно вверх? тянуть с ускорением 1 м/с2? Коэффициент трения 0,2
РЕШЕНИЕ

Автомобиль массой 4 т движется в гору с ускорением 0,2 м/с2. Найти силу тяги, если уклон равен 0,02 и коэффициент сопротивления 0,04
РЕШЕНИЕ

Поезд массой 3000 т движется вниз под уклон, равный 0,003. Коэффициент сопротивления движению равен 0,008. С каким ускорением движется поезд, если сила тяги локомотива равна: а) 300 кН; б) 150 кН; в) 90 кН
РЕШЕНИЕ

Мотоцикл массой 300 кг начал движение из состояния покоя на горизонтальном участке дороги. Затем дорога пошла под уклон, равный 0,02. Какую скорость приобрел мотоцикл через 10 с после начала движения, если горизонтальный участок дороги он проехал за половину этого времени? Сила тяги и коэффициент сопротивления движению на всем пути постоянны и соответственно равны 180 Н и 0,04
РЕШЕНИЕ

Брусок массой 2 кг находится на наклонной плоскости с углом наклона 30°. Какую силу, направленную горизонтально (рис. 39), надо приложить к бруску, чтобы он двигался равномерно по наклонной плоскости? Коэффициент трения бруска о наклонную плоскость равен 0,3
РЕШЕНИЕ

Поместите на линейке небольшой предмет (резинку, монету и т. д.). Постепенно поднимайте конец линейки, пока предмет не начнет скользить. Измерьте высоту h и основание b полученной наклонной плоскости и вычислите коэффициент трения
РЕШЕНИЕ

С каким ускорением а скользит брусок по наклонной плоскости с углом наклона α = 30° при коэффициенте трения μ = 0,2
РЕШЕНИЕ

В момент начала свободного падения первого тела с некоторой высоты h второе тело стало скользить без трения с наклонной плоскости, имеющей ту же высоту h и длину l = nh. Сравнить конечные скорости тел у основания наклонной плоскости и время их движения.

Букина Марина, 9 В

Движение тела по наклонной плоскости

с переходом на горизонтальную

В качестве исследуемого тела я взяла монету достоинством 10 рублей (грани ребристые).

Технические характеристики:

Диаметр монеты – 27,0 мм;

Масса монеты - 8,7 г;

Толщина - 4 мм;

Монета изготовлена из сплава латунь-мельхиор.

За наклонную плоскость я решила принять книгу длиной 27 см. Она и будет являться наклонной плоскостью. Горизонтальная же плоскость неограниченная, т. к. цилиндрическое тело, а в дальнейшем монета, скатываясь с книги, будет продолжать свое движение на полу (паркетная доска). Книга поднята на высоту 12 см от пола; угол между вертикальной плоскостью и горизонтальной равен 22 градусам.

В качестве дополнительного оборудования для измерений были взяты: секундомер, линейка обыкновенная, длинная нить, транспортир, калькулятор.

На Рис.1. схематичное изображение монеты на наклонной плоскости.

Выполним пуск монеты.

Полученные результаты занесем в таблицу 1

вид плоскости

наклонная

плоскость

горизонтальная

плоскость

*0,27 м величина постоянная tобщ=90,04

Таблица 1

Траектория движения монеты во всех опытах была различна, но некоторые части траектории были похожи. По наклонной плоскости монета двигалась прямолинейно, а при движении на горизонтальной плоскости – криволинейно.

На Рисунке 2 изображены силы, действующие на монету во время её движения по наклонной плоскости:


С помощью II Закона Ньютона выведем формулу для нахождения ускорения монеты (по Рис.2.):

Для начала, запишем формулу II Закона Ньютона в векторном виде.

Где - ускорение, с которым движется тело, - равнодействующая сила (силы, действующие на тело), https://pandia.ru/text/78/519/images/image008_3.gif" width="164" height="53">, на наше тело во время движения действуют три силы: сила тяжести (Fтяж), сила трения (Fтр) и сила реакции опоры (N);

Избавимся от векторов, при помощи проецирования на оси X и Y:

Где - коэффициент трения

Т. к. у нас нет данных о числовом значении коэффициента трения монеты о нашу плоскость, воспользуемся другой формулой:

Где S – путь, пройденный телом, V0- начальная скорость тела, а – ускорение, с которым двигалось тело, t – промежуток времени движения тела.

т. к. ,

в ходе математических преобразований получаем следующую формулу:

При проецировании этих сил на ось Х (Рис.2.) видно, что направления векторов пути и ускорения совпадают, запишем полученную форму, избавившись от векторов:

За S и t примем средние значения из таблицы, найдем ускорение и скорость (по наклонной плоскости тело двигалось прямолинейно равноускоренно).

https://pandia.ru/text/78/519/images/image021_1.gif" align="left" width="144" height="21">

Аналогично найдём ускорение тела на горизонтальной плоскости (по горизонтальной плоскости тело двигалось прямолинейно равнозамедленно)

R=1, 35 см, где R – радиус монеты

где - угловая скорость, -центростремительное ускорение, - частота обращения тела по окружности

Движение тела по наклонной плоскости с переходом на горизонтальную – прямолинейное равноускоренное, сложное, которое можно разделить на вращательное и поступательное движения.

Движение тела на наклонной плоскости является прямолинейным равноускоренным.

По II Закону Ньютона видно, что ускорение зависит только от равнодействующей силы (R), а она на протяжении всего пути по наклонной плоскости остается величиной постоянной, т. к. в конечной формуле, после проецирования II Закона Ньютона, величины, задействованные в формуле являются постоянными https://pandia.ru/text/78/519/images/image029_1.gif" width="15" height="17">поворота из некоторого начального положения.

Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая, жестко связанная с телом, перемещается, оставаясь параллельной самой себе. Все точки тела, движущегося поступательно, в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе.


Факторы, влияющие на время движения тела

по наклонной плоскости

с переходом на горизонтальную

Зависимость времени от монет разного достоинства (т. е. имеющих разный d (диаметр)).

Достоинство монеты

d монеты, см

tср, с

Таблица 2

Чем больше диаметр монеты, тем больше время её движения.

Зависимость времени от угла наклона

Угол наклона

tср, с

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

На поверхности Земли сила тяжести (гравитация ) постоянна и равна произведению массы падающего тела на ускорение свободного падения: F g = mg

Следует заметить, что ускорение свободного падения величина постоянная: g=9,8 м/с 2 , и направлена к центру Земли. Исходя из этого можно сказать, что тела с разной массой будут падать на Землю одинаково быстро. Как же так? Если бросить с одинаковой высоты кусочек ваты и кирпич, то последний проделает свой путь до земли быстрее. Не забывайте о сопротивлении воздуха! Для ваты оно будет существенным, поскольку ее плотность очень мала. В безвоздушном пространстве кирпич и вата упадут одновременно.

Шар движется по наклонной плоскости длиной 10 метров, угол наклона плоскости 30°. Какова будет скорость шара в конце плоскости?

На шар действует только сила тяжести F g , направленная вниз перпендикулярно к основанию плоскости. Под действием этой силы (составляющей, направленной вдоль поверхности плоскости) шар будет двигаться. Чему будет равна составляющая силы тяжести, действующей вдоль наклонной плоскости?

Для определения составляющей необходимо знать угол между вектором силы F g и наклонной плоскостью.

Определить угол довольно просто:

  • сумма углов любого треугольника равна 180°;
  • угол между вектором силы F g и основанием наклонной плоскости равен 90°;
  • угол между наклонной плоскостью и ее основанием равен α

Исходя из вышесказанного, искомый угол будет равен: 180° - 90° - α = 90° - α

Из тригонометрии:

F g накл = F g ·cos(90°-α)

Sinα = cos(90°-α)

F g накл = F g ·sinα

Это действительно так:

  • при α=90° (вертикальная плоскость) F g накл = F g
  • при α=0° (горизонтальная плоскость) F g накл = 0

Определим ускорение шара из известной формулы:

F g ·sinα = m·a

A = F g ·sinα/m

A = m·g·sinα/m = g·sinα

Ускорение шара вдоль наклонной плоскости не зависит от массы шара, а только от угла наклона плоскости.

Определяем скорость шара в конце плоскости:

V 1 2 - V 0 2 = 2·a·s

(V 0 =0) - шар начинает движение с места

V 1 2 = √2·a·s

V = 2·g·sinα·S = √2·9,8·0,5·10 = √98 = 10 м/с

Обратите внимание на формулу! Скорость тела в конце наклонной плоскости будет зависеть только от угла наклона плоскости и ее длины.

В нашем случае скорость 10 м/с в конце плоскости будет иметь и бильярдный шар, и легковой автомобиль, и самосвал, и школьник на санках. Конечно же, трение мы не учитываем.

В нашем случае F н = m·g , т.к. поверхность горизонтальна. Но, нормальная сила по величине не всегда совпадает с силой тяжести.

Нормальная сила - сила взаимодействия поверхностей соприкасающихся тел, чем она больше - тем сильнее трение.

Нормальная сила и сила трения пропорциональны друг другу:

F тр = μF н

0 < μ < 1 - коэффициент трения, который характеризует шероховатость поверхностей.

При μ=0 трение отсутствует (идеализированный случай)

При μ=1 максимальная сила трения, равна нормальной силе.

Сила трения не зависит от площади соприкосновения двух поверхностей (если их массы не изменяются).

Обратите внимание: уравнение F тр = μF н не является соотношением между векторами, поскольку они направлены в разные стороны: нормальная сила перпендикулярна поверхности, а сила трения - параллельна.

1. Разновидности трения

Трение бывает двух видов: статическое и кинетическое .

Статическое трение (трение покоя ) действует между соприкасающимися телами, находящимися в покое друг относительно друга. Статическое трение проявляется на микроскопическом уровне.

Кинетическое трение (трение скольжения ) действует между соприкасающимися и движущимися друг относительно друга телами. Кинетическое трение проявляется на макроскопическом уровне.

Статическое трение больше кинетического для одних и тех же тел, или коэффициент трения покоя больше коэффициент трения скольжения.

Наверняка вам это известно из личного опыта: шкаф очень трудно сдвинуть с места, но поддерживать движение шкафа гораздо легче. Это объясняется тем, что при движении поверхности тел "не успевают" перейти на соприкосновения на микроскопическом уровне.

Задача №1: какая сила потребуется для поднятия шара массой 1 кг по наклонной плоскости, расположенной под углом α=30° к горизонту. Коэффициент трения μ = 0,1

Вычисляем составляющую силы тяжести. Для начала нам надо узнать угол между наклонной плоскостью и вектором силы тяжести. Подобную процедуру мы уже делали, рассматривая гравитацию. Но, повторение - мать учения:)

Сила тяжести направлена вертикально вниз. Сумма углов любого треугольника равна 180°. Рассмотрим треугольник, образованный тремя силами: вектором силы тяжести; наклонной плоскостью; основанием плоскости (на рисунке он выделен красным цветом).

Угол между вектором силы тяжести и основанием плоскость равен 90°.
Угол между наклонной плоскостью и ее основанием равен α

Поэтому, оставшийся угол - угол между наклонной плоскостью и вектором силы тяжести:

180° - 90° - α = 90° - α

Составляющие силы тяжести вдоль наклонной плоскости:

F g накл = F g cos(90° - α) = mgsinα

Необходимая сила для поднятия шара:

F = F g накл + F трения = mgsinα + F трения

Необходимо определить силу трения F тр . С учетом коэффициента трения покоя:

F трения = μF норм

Вычисляем нормальную силу F норм , которая равна составляющей силы тяжести, перпендикулярно направленной к наклонной плоскости. Мы уже знаем, что угол между вектором силы тяжести и наклонной плоскостью равен 90° - α.

F норм = mgsin(90° - α) = mgcosα
F = mgsinα + μmgcosα

F = 1·9,8·sin30° + 0,1·1·9,8·cos30° = 4,9 + 0,85 = 5,75 Н

Нам потребуется к шару приложить силу в 5,75 Н для того, чтобы закатить его на вершину наклонной плоскости.


Задача №2: определить как далеко прокатится шар массой m = 1 кг по горизонтальной плоскости, скатившись по наклонной плоскости длиной 10 метров при коэффициенте трения скольжения μ = 0,05

Силы, действующие на скатывающийся шар, приведены на рисунке.


Составляющая силы тяжести вдоль наклонной плоскости:

F g cos(90° - α) = mgsinα

Нормальная сила:

F н = mgsin(90° - α) = mgcos(90° - α)

Сила трения скольжения:

F трения = μF н = μmgsin(90° - α) = μmgcosα

Результирующая сила:

F = F g - F трения = mgsinα - μmgcosα

F = 1·9,8·sin30° - 0,05·1·9,8·0,87 = 4,5 Н

F = ma; a = F/m = 4,5/1 = 4,5 м/с 2

Определяем скорость шара в конце наклонной плоскости:

V 2 = 2as; V = &38730;2as = &38730;2·4,5·10 = 9,5 м/с

Шар заканчивает движение по наклонной плоскости и начинает движение по горизонтальной прямой со скоростью 9,5 м/с. Теперь в горизонтальном направлении на шар действует только сила трения, а составляющая силы тяжести равна нулю.

Суммарная сила:

F = μF н = μF g = μmg = 0,05·1·9,8 = -0,49 Н

Знак минус означает, что сила направлена в противоположную сторону от движения. Определяем ускорение замедления шара:

a = F/m = -0,49/1 = -0,49 м/с 2

Тормозной путь шара:

V 1 2 - V 0 2 = 2as; s = (V 1 2 - V 0 2)/2a

Поскольку мы определяем путь шара до полной остановки, то V 1 =0 :

s = (-V 0 2)/2a = (-9,5 2)/2·(-0,49) = 92 м

Наш шарик прокатился по прямой целых 92 метра!

В продолжение темы:
Купля-продажа

Увольнение сотрудника – операция, которую регулярно оформляет в учете бухгалтер предприятия. Расчет при увольнении в 1С 8.3 Бухгалтерия необходимо делать в соответствии с...

Новые статьи
/
Популярные