Техническое обслуживание кривошипно-шатунного механизма. Техническое обслуживание и диагностика кривошипно – шатунного механизма Параметры технического состояния кривошипно шатунного механизма

Одним из трудоемких, но требующих определенных навыков методов диагностики двигателя является прослушивание его работы с помощью различного типа виброакустических приборов – от самых простых по конструкции стетоскопов со звукочувствительным стержнем (напоминающих медицинские фонендоскопы), до электронных стетоскопов типа «Экранас» и ультразвуковых стетоскопов с двумя наушниками модели УС-01 и т.д.

Для усиления звукового эффекта от виброударных импульсов в харак- терных точках и зонах двигателя стетоскоп «Экранас» (рис.2.9.а) снабжен- двухтранзисторным усилителем низкой частоты 4 с пьезокристаллическим датчиком и батарейным питанием 3 в. Пластмассовый корпус 3 имеет гнезда для установки стержня 5 и подключения телефона-наушника 6. У стетоскопа модели КИ-1154, на стержне 5 смонтирован усилитель 3 и слуховой наконечник 6 рупорного типа.

На рис. 2.10 представлен ультразвуковой стетоскоп модели УС-01. Наличие двух каналов (звукового и ультразвукового), специальных наушников, насадок на микрофон в виде гибких зондов, позволяющих прослушивать работу механизмов в труднодоступных местах при повышенной температуре деталей двигателя. Наличие на корпусе электронного табло, высвечивающего в цифрах силу стуков и шумов (в децибелах – дБ) – делают данную модель стетоскопа эффективным средством диагностики технического состояния КШМ и ГРМ двигателей. Источник питания прибора напряжения 12 В. Перед диагностированием двигатель следует прогреть до температуры охлаждающей жидкости


Рисунок 2.10. Ультрозвуковой стетоскоп УС-01

90 + 5 0 С. Прослушивание производят, прикасаясь острием наконечника звукочувствительного стержня в зоне сопряжения проверяемого механизма.

Работу сопряжения поршень – цилиндр прослушивают по всей высоте цилиндра по зонам 1 (рис.2.8) при малой частоте вращения коленчатого вала (КВ) с переходом на среднюю – стуки сильного глухого тона, усиливающимися с увеличением нагрузки, свидетельствуют о возможном увеличении зазора между поршнем и цилиндром, об изгибе шатуна, поршневого пальца и т.д.

Сопряжение поршневое кольцо-канавка проверяют на уровне ВМТ (зона 8) на средней частоте вращения КВ – слабый стук высокого тона свидетельствует об увеличенном зазоре между кольцами и канавками поршней, либо о чрезмерном износе или поломке колец.

Сопряжение поршневой палец – втулка верхней головки шатуна проверяют на уровне ВМТ (зона 3) при малой частоте вращения КВ с резким переходом на среднюю. Сильный стук высокого тона, похожий на частые удары молотком по наковальне, говорит о повышенном износе деталей сопряжения.

Работу сопряжения коленчатый вал – шатунный подшипник прослушивают в зонах 7 на малой и средней частотах вращения КВ. Глухой звук среднего тона сопровождает износ шатунных вкладышей. Стук коренных подшипников КВ прослушивают в этих же зонах (чуть ниже) при резком изменении частоты вращения КВ (максимальном открытием или прикрытием дроссельной заслонки): сильный глухой стук низкого тона свидетельствует об износе коренных подшипников. Стук в клапанных механизмах прослушивают в зонах 2, наличие износа распределительного вала – в зонах 5, а износы распределительных шестерен – в зоне 6.

Широко используемым методом диагностирования технического состояния КШМ и ГРМ двигателей является замер компрессии в цилиндрах двигателей в конце тактов сжатия с помощью компрессометров и компрессографов с самописцами. На рис. 2.11.а изображен компрессометр мод 179 с рукояткой пистолетного типа, манометром, наконечником для установки в

свечное отверстие, кнопкой клапана сброса давления (от предыдущего показания) и т.д.

Несколько отличается по конструкции компрессометр для дизелей (рис.2.11.б). В нижней части он снабжен жестким металлическим корпусом

с зажимной гайкой и наконечником, которые вместе с корпусом устанавливаются на место форсунок в головке блока с последующим креплением болтом и скобой форсунки.

Компрессограф КВ-1126 (рис.2.12) с самописцем и питанием от аккумуляторной батареи обеспечивает регистрацию на карточке (предварительно в гнездо прибора вставляется микрорулон специально разграфленной бумаги) давления в цилиндрах в диапазоне 0,4-1,6 МПа (4-16 кгс/см 2), цена деления карточки 0,05 МПа (0,5 кгс/см 2). Прибор снабжается различного рода переходниками и насадками.



Рисунок 2.11. Компрессометры:

а – для карбюраторных двигателей; б – для дизелей; 1 – корпус; 2 – манометр; 3 – штуцер; 5 – контргайка; 6 – трубка; 7 – резиновый наконечник; 8 – золотник; 10 – выпускной клапан; 11 – шланг; 12 – переходник; 13 – зажимная гайка; 14 – клапан; 15 – пружина клапана; 16 – седло; 17 – наконечник


Рисунок 2.12. Компрессограф с самописцем КВ – 1126 (Чехия)

Рисунок 2.13. Компрессограф К–181

Компрессограф мод. К-181 (рис.2.13) также измеряет давление в цилиндрах и фиксирует его на бумажном бланке, закрепленном во вращающемся барабане путем просечки встроенным ножом. Перед началом проверки компрессии следует прогреть двигатель, вывернуть все свечи и полностью открыть воздушную и дроссельную заслонки. Затем наконечник прибора вставляется в отверстие для свечи первого цилиндра и плотно прижимается к гнезду. Коленчатый вал проворачивается при проверке стартером (частота вращения должна быть не менее 200-250 мин -1) не менее 10-12 оборотов. После этого следует проверить по манометру (или по отрывной карточке) показания прибора и сравнить его с нормативным. Аналогично проверяют компрессию в других цилиндрах двигателя. Отклонение показаний от нормативных для данной модели двигателя. Отклонение показаний от нормативных для данной модели двигателя более чем на 25% свидетельствует о серьезной неисправности двигателя и необходимости прекращения его эксплуатации. Проверка компрессии производится при полностью закрытых клапанах проверяемого цилиндра.

При значительном снижении компрессии следует попытаться определить место негерметичности. В этих целях в свечное отверстие заливают иногда до 20 см 3 моторного масла для временного уплотнения колец. Если после этого показания прибора не увеличатся, то это свидетельствует о негерметичности клапанов. Компрессия для карбюраторных двигателей с пониженной степенью сжатия составляет обычно 0,7-0,8 МПа (7-8 кгс/см 2), для двигателей с повышенной степенью сжатия – 0,9-1,5 МПа (9-15 кгс/см 2), для дизелей различных моделей 3,5-5 МПа (35-50 кгс/см 2). Причем даже при допустимом снижении компрессии разница в показаниях для отдельных цилиндров карбюраторных двигателей не должна превышать 0,1 МПа (1 кгс/см 2), а для дизелей – 0,2 МПа (2 кгс/cм 2).

Для проверки компрессии в дизелях начат выпуск портативного, в едином жестком корпусе компрессометра мод. К-183 с барабаном бумажных талонов для фиксации показаний встроенным ножом.

Более широкими возможностями при диагностировании технического состояния КШМ и ГРМ двигателей обладает прибор мод. К-69М (рис.2.14). Он состоит из шланга, подводящего сжатый воздух из магистрали к прибору, муфты 1, входного штуцера 2, редуктора 3, соединенного через входное сопло 4 с манометром 5. Далее в основную магистраль включен регулировочный винт 7, а на выходе установлен штуцер 8 и соединительная муфта 9. Резиновый шланг для подачи сжатого воздуха в цилиндры имеет на конце специальный наконечник-штуцер 10. С помощью прибора К-69М производится


Рисунок 2.14. Прибор К–69М

замер утечек сжатого воздуха из цилиндров двигателя при полностью закрытых клапанах. Из сравнения полученных показателей с нормативными делается заключение о техническом состоянии тех или иных элементов КШМ и ГРМ. Перед началом проверки следует прогреть двигатель до температуры охлаждающей жидкости 90 + 5 о С, затем вывернуть все свечи зажигания из цилиндров, подготовить прибор к работе, отрегулировать давление подводимого к прибору воздуха до 0,3 МПа (3 кгс/см 2), а рукояткой редуктора 3 установить на нулевой отметке шкалы, т.е. измерительное устройство представляет собой как бы «манометр обратного действия»: когда на него подается постоянное давление в 0,16 МПа, стрелка стоит на нулевой отметке, а когда в ходе проверки утечек сжатого воздуха из цилиндров давление начинает снижаться, стрелка пойдет вверх, показывая на шкале процент утечки сжатого воздуха. Проверку начинают обычно с первого цилиндра, предварительно установив поршень в конце такта сжатия, при этом оба клапана цилиндра закрыты. Для определения этого положения в свечное отверстие вставляют либо специальный свисток (который перестает свистеть при установке поршня в ВМТ) либо пыж, который выбрасывается из свечного отверстия в конце такта сжатия).

Вставив штуцер в свечное отверстие первого цилиндра, снимают показания прибора по шкале, соответствующее утечке воздуха (У2). Утечке воздуха при положении поршней в начале такта сжатия в НМТ обозначается как У1. Проверку цилиндров ведут по порядку работы их на двигателе. Состояние поршневых колец и герметичности клапанов оценивают по утечке У1, а состояние цилиндров по утечке У2 или по их разнице (У2-У1). Если эта утечка превышает установленную норму, это свидетельствует об износе цилиндров «на конус». Кроме того, конкретные места утечек можно проверить, подсоединив напрямую шланг от магистрали с помощью быстросъемной муфты 11 к штуцеру 10 – в местах будет слышное шипение прорывающегося воздуха, которое удобно прослушивать с помощью стетоскопа. Если, например, сжатый воздух подан при проверке в третий цилиндр, для которого обнаружен большой процент утечек У2 и У1, а разница утечек (У2-У1) невелика и не превышает норму, и при этом слышно шипение во впускном коллекторе, вывод однозначен: негерметичен впускной клапан третьего цилиндра, состояние всех остальных элементов в норме.

Пневмотестер К-272 (рис.2.15) имеет аналогичное назначение, что и прибор К-69М, но, кроме того, обладает целым рядом преимуществ – диагностирование герметичностью надпоршневого пространства двигателей выполняет с большей точностью при меньших трудозатратах, масса его и габаритные размеры в шесть раз меньше, он пригоден для диагностирования дизелей КамАЗ, ЗИЛ-4331 и т.д. Пневмотестер К-272 состоит из блока питания 1, содержащего редуктор и фильтр тонкой очистки, указателя 2, объединяющего в себе дроссель, манометр и быстросъемные муфты 3 и 5, соединенные между собой гибкими воздухопроводами и поливинилхлорид ной трубки с внутренним диаметром 8 мм. К прибору прилагается штуцер для подсоединения через свечное отверстие к цилиндру, сигнализатор контроля начала сжатия и контрольный дроссель. Редуктор РДФ-3-2 позволяет расширить пределы давления воздуха от 0,25 до 0,8 МПа (8 кгс/см 2). Для повышения точности показаний указатель прибора состоит из дросселя (корундовой втулки с диаметром внутреннего отверстия 1,2 мм). Рабочее давление сжатого воздуха регулируют вентилем редуктора на 0,16 МПа (1,6 кгс/см 2). Оценка герметичности цилиндра определяется по падению давления на дросселе указателя 2, пропорциональное расходу воздуха через диагностируемый цилиндр, как и при проверке прибором К-69М. Конкретные места утечек можно определить по шипению прорывающегося воздуха с помощью стетоскопа (при этом давление сжатого воздуха, подаваемого в цилиндры, следует увеличить до 0,3-0,4 МПа).



Рисунок 2.15. Прибор К–272: а) основные узлы и детали

Пневмотестора; б) пневмотестер в сборе

Еще одним из методов диагностики цилиндропоршневой группы двигателей является замер количества газов, прорывающихся в поддон картера на различных режимах работы двигателя (в основном на максимальной частоте, под нагрузкой, для чего ведущие колеса устанавливают на беговые барабаны стенда для проверки показателей автомобиля и имитируют соответствующие условия работы). Этот метод не нашел широкого применения на производстве и используется в основном в лабораторных условиях, при испытаниях двигателей.

Для замера количества газов, прорывающихся в поддон картера, используют индикатор мод. КИ–13671–ГОСНИТИ (рис.2.16). Он состоит из корпуса 1, выполненного в виде Г–образной трубки с резьбовыми отверстиями сверху для подсоединения сигнализатора 3 и патрубков 2. Снизу с помощью комплекта патрубков индикатор подсоединяется к горловинам вентиляции картеров. В боковой крышке 11 со шкалой для определения расхода имеется ступица 8 с проходным сечением 9.

Одним из методов поэлементной диагностики является измерение зазоров в кривошипно-шатунном механизме с помощью прибора мод. КИ-1140- ГОСНИТИ (рис.2.17а). Он состоит из корпуса 2 с закрепленным на нем индикатором 1 часового типа (с ценой деления 1 мк), пневматического приемника 3, фланца 4 для крепления устройства в головке цилиндров вместо форсунки или свечи зажигания, уплотнителя 5, направляющей 6 и штока 7, жестко соединенного с ножкой индикатора. На рис. 2.17б показана установка прибора на


Рисунок 2.16. Индикатор расхода газов КИ–13671– ГОСНИТИ:

А – внешний вид; б – установка индикатора

на двигателе с подсоединенным шлангом от компрессорно-вакуумной установки мод. КИ-13907. Величины зазоров в верхней головке шатуна и шатунном подшипнике определяют при неработающем двигателе, предварительно сняв с него свечу зажигания или форсунку, и на их место устанавливают уплотнитель 5 с прибором. К боковой трубке с помощью быстросъемной муфты 9 подсоединяют шланг компрессорно-вакуумной установки. Затем устанавливают поршень на 0,5-1,0 мм ниже ВМТ на такте сжатия, спорят коленчатый вал двигателя от проворачивания и попеременно создают в цилиндре через трубку 6 давление в 200 кПа и разрежение 60 кПа, отчего поршень поднимается или опускается, устраняя зазоры в вышеперечисленных сопряжениях. Суммарный зазор при этом фиксируется индикатором. Например, суммарный зазор для двигателя ЗИЛ-130 не должен превышать 0,25-0,3 мм. Этот метод используется в основном в лабораториях при испытаниях двигателей на долговечность.

2.3. Обкатка и испытание двигателей после ремонта

Стенд обкаточно-тормозной предназначен для послеремонтной обкатки двигателей и снятия характеристик. Стенд позволяет обкатывать двигатели различных моделей в широком диапазоне мощностей. Большим достоинством предлагаемого стенда является возможность проведения как холодной, так горячей обкатки двигателей, причем при горячей обкатке электродвигатель стенда работает в режиме генератора и отдает электроэнергию в сеть.


Рисунок 2.17. Устройство КИ–11140–ГОСНИТИ для измерения зазоров в кривошипно-шатунном механизме:

а – общий вид прибора; б – установка прибора на двигатель

Совершенство конструкции стенда и наличие соответствующих приборов позволяет получать достаточно точные результаты испытаний. Стенд состоит из следующих основных узлов: двигателя-тормоза 3 (рис. 2.18) в сборе с весовым механизмом и пультом контрольных приборов2, регулировочного реостата 5, электрошкафа 1, приспособления для установки двигателей, бачка для топлива, устройства для замера расхода топлива. В состав двигателя-тормоза входят балансировочная электромашина, весовой механизм и пульт контрольных приборов, смонтированные на общей плите, и карданный вал для присоединения испытываемого двигателя.

Балансировочная электромашина служит приводом при холодной обкатке двигателей и тормозом при обкатке работающих двигателей и при испытании на мощность. Электромашина представляет собой асинхронный двигатель с фазовым ротором и работает в двух режимах – двигательном и генераторном. В генераторном режиме балансировочная электромашина начинает работать автоматически, как только двигатель сообщает ее ротору скорость вращения выше синхронной (свыше 1500 мин -1), при этом вырабатываемая электроэнергия поступает в сеть с коэффициентом рекуперации от 0,5 до 0,85.

Весовой механизм представляет собой маятниковый силоизмеритель, служащий для замера тормозного момента при обкатке двигателей под нагрузкой или крутящего момента при холодной обкатке. Тормозной или крутящий момент определяется по шкале циферблата. В состав весового механизма предусмотрен гидравлический демпфер для гашения колебаний маятника.

На пульте размещаются приборы, необходимые для контроля работы двигателя: циферблат весового механизма, электрический дистанционный тахометр, манометры, термометры.


Рисунок 2.18. Стенд обкаточно-тормозной мод. КИ-5540:

1 – электрошкаф; 2 – пульт контрольно-измерительных

Приборов; 3 – двигатель-тормоз с весовым механизмом;

4 – испытываемый двигатель; 5 – регулировочный

Реостат.

Контрольные вопросы:

1. Какие неисправности кривошипно-шатунного и газораспределительного механизмов вызывают снижение мощности двигателя?

2. Какие причины могут вызывать повышенный шум при работе двигателя?

3. Какие неисправности кривошипно-шатунного и газораспределительного механизмов могут вызывать затрудненный пуск двигателя?

4. Какие причины могут вызывать механические повреждения и поломки двигателя?

5. Какие неисправности кривошипно-шатунного и газораспределительного механизмов вызывают перебои в работе двигателя?

6. С помощью каких приборов прослушивают двигатель при его работе?

7. При каких частотах вращения двигателя прослушивают работу сопряжения поршень – цилиндр?

8. При каких частотах вращения двигателя прослушивают работу сопряжения поршневое кольцо – канавка?

9. При каких частотах вращения двигателя прослушивают работу сопряжения поршневой палец – втулка верхней головки шатуна?

10. При каких частотах вращения двигателя прослушивают работу сопряжения коленчатый вал – шатунный подшипник?

11. При каких частотах вращения двигателя прослушивают работу сопряжения коленчатый вал – коренной подшипник?

12. С помощью какого прибора измеряют компрессию в цилиндрах двигателя?

3. Диагностика системы смазки

3.1. Основные неисправности системы смазки

3.1.1. Резкое падение давления масла в системе – до нулевой отметки манометра на щитке приборов или загорания аварийного красного сигнала.

При ЕО двигатель очищают от грязи, проверяют его состояние визуально и прослушивают работу в разных режимах.

При ТО-1 проверить крепление опор двигателя. Проверить герметичность соединения головки цилиндров, поддона картера, сальника коленчатого вала. При не плотном соединении головки с блоком, будут видны подтеки масла на стенках блока цилиндров. При неплотном соединении поддона картера и сальника коленчатого вала так же судят по подтекам масла.

При ТО-2 необходимо подтянуть гайки крепления головок цилиндров. Подтяжку головки из алюминиевого сплава производят на холодном двигателе динамометрическим ключом либо обычным без применения насадок. Усилие должно быть в пределах 7,5 - 7,8 кгс/м. Подтяжка должна производиться от центра, постепенно перемещаясь к краям и при этом должна идти крест на крест, без рывков (равномерно). Подтянуть крепление поддона картера.

СО 2 раза в год проверить состояние цилиндропоршневой группы.

Диагностирование неисправностей кривошипно - шатунного механизма

Неисправность

Двигатель не пускается

Слабая компрессия в цилиндрах ввиду износа поршневой группы

Двигатель работает с перебоями и не развивает номинальной мощности

Попадание в цилиндры воды из системы охлаждения

Изношены поршневые кольца

Засорена выпускная труба

Дымный выпуск отработавших газов

Закоксовывание поршневых колец

Износ поршневой группы

Двигатель не прогрет

Попадание воды в цилиндры

Стуки в двигателе

Изношены поршневые пальцы, отверстия в бобышках поршня и верхней головки шатуна

Изношены поршни и гильзы

Изношены вкладыши и шейки коленчатого вала

Состояние сопряжения поршень -- поршневые кольца -- гиль цилиндра можно оценить по количеству газов, прорывающихся картер. Этот диагностический параметр измеряют при помощи расходомера КИ-4887-1 (рис. 8), предварительно прогрев двигатель до нормального теплового режима.

Прибор имеет трубу с входных и выходным 6 дроссельными кранами. Входной патрубок 4 присоединяют к маслозаливной горловине двигателя, эжектор 7 для отсоса газов устанавливают внутри выхлопной трубы или присоединяют вакуумной установке. В результате разрежения в эжекторе картерные газы поступают в расходомер. Устанавливая при помощи кранов 5 и 6 жидкость в столбиках манометров 2 и 3 на одном уровне, добиваются, чтобы давление в полости картера было равно атмосферному. Перепад давления м/г устанавливают по манометру 1 одинаковым для всех замеров при помощи крана 5. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают его с номинальным (л/мин):

Рис.8. Схема расходомера КИ-4887-1: 1--3 - манометры, 4 - входной патрубок, 5, 6 - краны, 7 - эжектор.

Внешние проявления неисправностей деталей цилиндропоршневой группы - (поршни, гильзы и поршневые кольца) следующие:

  • - увеличение расхода масла на долив;
  • - ухудшение пусковых качеств двигателя;
  • - снижение мощностных и экономических показателей;
  • - увеличение расхода картерных газов;
  • - существенное ухудшение состояния картерного масла.

Диагностирование состояния деталей ЦПГ по указанным проявлениям достаточно затруднено, т.к. на них могут влиять неисправности других узлов и систем двигателя. Например, на пусковые качества двигателя наряду с износом и дефектами деталей ЦПГ могут влиять неисправности системы электрооборудования (аккумуляторных батарей, стартера, генератора) и раз регулировки топливной аппаратуры (увеличение угла опережения впрыска топлива, уменьшение пусковой подачи, снижение производительности подкачивающего насоса и др.). Поэтому при диагностировании деталей ЦПГ необходимо убедиться в исправности других узлов и систем двигателя, оказывающих влияние на работоспособность рассматриваемых деталей. Так, в случаях повышенного расхода масла на долив (выше 1,5 %) необходимо убедиться в отсутствии течи масла из двигателя и разгерметизации впускного тракта.


Рис.9 Прибор модели К-69М для определения технического состояния цилиндропоршневой группы двигателя: 1 -- шланг от магистрали сжатого воздуха, 2, 11 -- быстросъемные муфты, 3 и 8 -- штуцера, 4 -- редуктор, 5 -- калиброванное отверстие, б -- манометр, 7 -- регулировочный винт, 9 -- накидная гайка, 10 -- шланг для присоединения прибора к двигателю, 12 -- штуцер ввертываемый в отверстие для форсунки.

Работа прибора основана на измерении утечки воздуха, подаваемого под давлением в цилиндр неработающего двигателя через отверстие для форсунки.

Прибор состоит из редуктора, манометра со шкалой, проградуированной в процентах утечки воздуха, регулировочного винта, входного и выходного штуцеров, шланга для соединения прибора с цилиндром двигателя, быстросъемных муфт для присоединения шланга магистрали сжатого воздуха к прибору и штуцеру, ввертываемому в резьбовое отверстие для форсунки. К прибору прилагаются звуковой сигнализатор для определения конца такта сжатия в цилиндре двигателя перед началом проверки. Для определения начала и конца такта сжатия в дизелях используют щуп-индикатор. Если значение утечки воздуха при положении поршня в в. м. т. больше предельного, следует проверить стетоскопом утечку воздуха через клапаны и убедиться в отсутствии утечки воздуха через прокладку головки цилиндров двигателя. Если при смачивании прокладки головки цилиндров мыльной водой на ней или в наливной горловине радиатора появляются пузырьки воздуха, это свидетельствует о слабой затяжке гаек головки цилиндров или о начале разрушения прокладки. Возможно наличие трещины в блоке цилиндров или камере сгорания.

Стуки двигателя прослушивают при помощи стетоскопа, прикасаясь концом стержня или к зонам прослушивания на двигателе.

Состояние коренных подшипников коленчатого вала определяют, прослушивая нижнюю часть блока цилиндров при резком увеличении и сбросе оборотов двигателя. Изношенные коренные подшипники издают сильный глухой стук низкого тона, усиливающийся при резком увеличении частоты вращения коленчатого вала.

Состояние шатунных подшипников коленчатого вала определяют аналогично. Изношенные шатунные подшипники издают стук среднего тона, по характеру схожий со стуком коренных подшипников, но менее сильный и более звонкий, исчезающий при выключении форсунки прослушиваемого цилиндра.

Работу сопряжения поршень -- гильза цилиндра прослушиваютпоршневого пальца, особенно, если у двигателя наблюдается повышенный расход топлива и масла. Скрипы и шорохи в сопряжении поршень -- гильза цилиндра свидетельствуют о начинающемся заедании в этом сопряжении, вызванном малым зазором или недостаточным смазыванием.

Состояние сопряжения поршневой палец -- втулка верхней головки шатуна проверяют, прослушивая верхнюю часть блока цилиндров при малой частоте вращения коленчатого вала с резким переходом на среднюю. Резкий металлический стук, напоминающий частые удары молотком по наковальне и пропадающий при отключении форсунок, указывает на увеличение зазора между поршневым пальцем и втулкой, недостаточное смазывание или чрезмерно большое опережение начала подачи топлива.

Сопряжение поршневое кольцо -- канавка поршня проверяют на уровне н. м. т. хода поршня при средней частоте вращения коленчатого вала. Слабый, щелкающий стук высокого тона, похожий на звук от ударов колец одно о другое, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе колец.

Мощность и экономичность двигателя зависят от компрессии в цилиндрах. Компрессия снижается при значительном износе или поломке деталей цилиндропоршневой группы. Компрессию оценивают по давлению в камерах сгорания двигателя при такте сжатия и замеряют компрессометром.

Для проверки компрессии в цилиндрах компрессометром прогревают двигатель до температуры охлаждающей жидкости 80-- 90 °С после чего его останавливают.

Замер компрессии дизельного двигателя проводится при отжатом вниз рычаге отсечки и обесточенном электромагнитном клапане, отвечающем за прекращение подачи топлива, который расположен на магистрали.

Компрессометр подключают к отверстию для форсунки. Вращают коленчатый вал двигателя стартером 10 -- 12 оборотов. Давление в цилиндре отсчитывают по шкале манометра. Следует помнить, что для этого используют прибор, предназначенный для замеров компрессии дизельного двигателя с пределом измерения не менее 60 атмосфер. В исправном состоянии компрессия дизельного двигателя (значение, которое получено в результате замеров) должна быть в пределах 30 кг/см2.


Рис.10 Проверка компрессии компрессометром: 1 -- головка цилиндров, 2 -- резиновый наконечник, 3 -- шланг, 4 -- манометр, 5 -- клапан выпуска воздуха, 6 -- золотник

Для определения износа гильз измерения выполняют нутромером в двух взаимно перпендикулярных направлениях и в трех поясах. Одно направление устанавливают параллельно оси коленчатого вала. Первый пояс располагается на расстоянии 5--10 мм от верхней плоскости блока, второй -- в средней части гильзы и третий -- на расстоянии 15--20 мм от нижней кромки гильзы. Измерения производят индикаторным нутромером.

Гнезда коренных подшипников проверяют поверочной скалкой на деформацию. Если скалка входит в гнезда и без больших усилий поворачивается, то деформация отсутствует, износ, а также отклонение от соосности гнезд коренных подшипников можно установить специальным приспособлением (рис.12). Принцип действия его заключается в том, что скалка 2 с помощью втулок 3 фиксируется в гнездах вкладышей коренных подшипников. На скалке располагают (последовательно при вводе в гнезда) индикаторы для контроля каждого отверстия. Рычаги 7 индикаторных устройств вводят в измеряемое отверстие. Индикаторы устанавливают на нуль и закрепляют на скалке. При вращении скалки отклонения стрелок индикаторов покажут удвоенное отклонение от соосности каждого отверстия.


Рис.12 Приспособление для контроля гнезд коренных подшипников: 1--рычаг, 2--скалка, 3--втулки.

Для правки и контроля шатунов применяют различные приспособления. На приспособлении, показанном на рис.13, одновременно проверяют изгиб и скручивание шатуна, а также расстояние между центрами его головок. При обнаруженных отклонениях, превышающих допустимые значения, шатун правят специальным ключом без снятия с приспособления. При этом верхняя головка шатуна должна занимать положение между вертикальной и горизонтальной плитами. Шатун плотно устанавливают в приспособлении с помощью большой скалки 8, пропущенной через стойки 9. Малую скалку 10 вставляют в обработанное отверстие верхней головки шатуна. Вначале предварительно проверяют скрученность шатуна. Для этого шатун, установленный в горизонтальном положении, вручную поворачивают так, чтобы малая скалка 10 поочередно упиралась на сухари стоек 11. Наличие зазора указывает на наличие скручивания шатуна. Определение величины скручивания и изгиба производят при нахождении шатуна в вертикальном положении. При этом малая скалка 10, соприкасаясь с упорами коромысла 4, находится в контакте с штифтами 2 индикаторов 6 и 7, которые указывают скрученность шатуна.

Индикатор 5 устанавливает отклонение расстояния между осями отверстий верхней и нижней головок, а индикатора 6 -- непараллельность осей отверстий.

После правки и контроля, резко перемещая рукоятку 13, выбивают большую скалку 8, освобождая шатун. Перед началом работы индикаторы приспособления настраивают по эталонному шатуну.

Рис. 13 Приспособление для контроля и правки шатуна: 1, 5, 6, 7--индикаторы, 2--штифты, 3--ось коромысла, 4--коромысло. 8, 10--большая и малая скалки, 9, 11 --стойки, 12--плита, 13--рукоятка.

Предварительную оценку состояния сопряжений КШМ можно получить по величине давлении масла в главной магистрали и характеру стуков в определенных зонах двигателя.

Давление масла проверяют устройством КИ-5472 ГОСНИТИ, которое состоит из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера для сглаживания пульсации масла при измерении давления и сменных штуцеров. Чтобы измерить давление в главной магистрали дизеля, устройство подключают к корпусу масляного фильтра, отсоединив трубку штатного манометра.

Для проверки давления выполните следующие операции:

  • подсоедините к корпусу масляного фильтра КИ-5472
  • запустите и прогрейте до нормального теплового состояния двигатель
  • зафиксируйте давление масла в магистрали при номинальной и минимально устойчивой частоте вращения коленчатого вала на холостом ходу

Стуки в сопряжениях КШМ прослушивают при неработающем двигателе электронным автостетоскопом ТУ 14 МО.082.017, попеременно создавая в надпоршневом пространстве разрежение и давление с помощью компрессорно-вакуумной установки КИ-4912 ГОСНИТИ или КИ-13907 ГОСНИТИ. Прослушивают стуки в сопряжениях бобышки поршня - поршневой палец , поршневой палец - втулка верхней головки шатун а, шейка коленчатого вала - шатунный механизм .

Если давление масла ниже допустимых значений, при наличии стуков в сопряжениях коленчатого вала проверяют зазоры в указанных сопряжениях. При пониженном давлении масла и отсутствии стуков проверяют регулировку сливного клапана смазочной системы. Если это не даст положительных результатов, проверяют подачу масла насосом и состояние редукционного клапана смазочной системы на стенде.

Определение состояния КШМ по зазорам в его сопряжениях

Заключение о состоянии КШМ можно сделать по величине зазоров в его сопряжениях. Суммарный зазор в верхней головке шатуна и шатунном подшипнике замеряют устройством КИ-11140 ГОСНИТИ.

Для измерения зазоров необходимо:

  • установить проверяемого цилиндра в ВМТ на такте сжатия и застопорить коленчатый вал
  • закрепить устройство в головке цилиндров вместо , ослабив стопорный винт и приподняв направляющую с индикатором и штоком вверх
  • опустить направляющую до упора штока в днище поршня (натягом) и зафиксировать ее винтом
  • присоединить распределительный трубопровод компрессорно-вакуумной установки к штуцеру пневматического приемника
  • включить установку и довести давление и разрежение в ее ресиверах соответственно до 0,06-0,1 МПа и 0,06-0,07 МПа
  • выполнить два-три цикла подачи в надпоршневое пространство давления и разрежения переключением распределительного крана до получения стабильных показаний индикатора
  • соединить краном ресивер сжатого воздуха с надпоршневым пространством и настроить индикатор на нуль
  • плавно соединить ресивер разреженного воздуха с надпоршневым пространством и зафиксировать по индикатору сначала зазор в соединении поршневой палец - верхняя головка шатуна, затем суммарный зазор в верхней головке шатуна и шатунном подшипнике

Зазоры в КШМ измеряют 3-кратно и принимают среднее значение.

Если зазоры хотя бы у одного шатуна превышают допустимые значения, двигатель подлежит ремонту.

ТО и диагностирование составных частей кривошипно-шатунный механизм дизеля трактора


Параметры технического состояния

Кривошипно-шатунный механизм включает: цилиндро-иоршневую группу (гильзы цилиндров, поршни и поршневые кольца), коленчатый вал с шатунными и коренными подшипниками, шатуны со втулками, порш-невые пальцы и маховик.

Основным параметром состояния цилиндро-поршне-вой группы считается расход картерного масла на угар. Однако отсутствие достаточно точного экспресс-метода определения этого параметра не всегда позволяет объективно судить о состоянии данного механизма. Чтобы с достаточной точностью определить угар масла, требуется несколько контрольных смен с точными измерениями количества доливаемого масла и топлива, что чрезвычайно трудоемко. При этом невозможно учесть утечки масла через неплотности сальников коленчатого вала и разъемов картера. Кроме того, угар масла в течение длительного времени работы дизеля изменяется незначительно и лишь при большом износе деталей цилиндро-поршневой группы, в частности поршневых колец, начинает резко возрастать.

Такой характер изменения угара масла в зависимости от наработки затрудняет прогнозирование по нему остаточного ресурса.

Об интенсивности изнашивания сочленений дизеля можно судить по концентрации продуктов износа в картерном масле, определяемой с помощью спектрографической установки. В этом случае для оценки степени изношенности основных деталей наряду с регулярным спектральным анализом проб масла, отбираемых через определенные промежутки работы дизеля, необходимо знать их химический состав и соотношение скоростей изнашивания сочленений. О целесообразности разборки дизеля для ремонта или устранения неисправности судят по резкому возрастанию концентрации основных элементов в работавшем масле.

Значительное возрастание концентрации алюминия свидетельствует о предельном износе поршней и необходимости их замены.

Наибольшее распространение для оценки состояния цилиидро-поршневой группы получил способ определения количества газов, прорывающихся в картер. При измерении количества газов с помощью ротаметра из-за высокого сопротивления выходу газов из картера и наличия в картере избыточного давления часть газов уходит в атмосферу через сальники коленчатого вала и другие неплотности, минуя прибор.

Чтобы избежать этого, во время измерений необходимо отсасывать газы из картера, обеспечивая прохождение их только через измерительное устройство.

Угар картерного масла и количество газов, прорывающихся в картер при работе дизеля на всех цилиндрах, являются интегральными (суммарными) оценочными показателями технического состояния цилиндро-поршневой группы.

Чтобы оценить состояние каждого цилиндра в отдельности, их поочередно выключают (декомпрессируют). Затем подсчитывают разницу между расходом газов, полученным при декомпрессировании проверяемого цилиндра, и средним расходом газов, полученным при декомпрессировании каждого из остальных цилиндров. При одинаковом состоянии всех цилиндров указанная разница будет незначительной. Если же она окажется большой, то это свидетельствует об аварийном состоянии данного цилиндра.

Сравнительную оценку технического состояния цилиндров можно дать по компрессии в них (давлению конца сжатия). Однако при этом необходимо учитывать неплотно и клапанов газораспределения. Разница в значениях компрессии у нового и изношенного дизелей возрастает с понижением частоты вращения коленчатого вала. Поэтому компрессию рекомендуется определять при пусковой частоте вращения коленчатого вала. Чтобы дать правильную сравнительную оценку состояния цилиндров по компрессии, должно быть соблюдено равенство и постоянство частоты вращения коленчатого вала и температуры стенок цилиндров при проверке каладого из них в отдельности. В связи с тем, что частота вращения коленчатого вала зависит от технического состояния пускового устройства, а температура стенок цилиндров - от условий проверки дизелей (предварительного разогрева его, температуры окружающей среды и пр.), соблюдение отмеченных условий не всегда представляется возможным. Следовательно, компрессия является ориентировочным показателем технического состояния цилиндро-поршневой группы. Одним из признаков слабой компрессии является трудный пуск дизеля (особенно в холодную погоду), обусловленный чрезмерно низкой температурой сжатого воздуха, не обеспечивающей самовоспламенения дизельного топлива.

В ГОСНИТИ разработан более совершенный способ оценки состояния отдельных цилиндров по величине разрежения, создаваемого на такте расширения при прокрутке коленчатого вала дизеля с помощью пускового устройства. В отличие от способа, основанного на определении компрессии, этот способ обладает меньшей трудоемкостью и более высокой точностью результатов диагностирования. Для указанных целей вместо компрессиметра в настоящее время применяют вакуум-анализатор, позволяющий диагностировать отдельные цилиндры, не закрепляя прибор в головке цилиндров.

О состоянии подшипников коленчатого вала мол<но судить по зазорам в них. Эллипсность и конусность шеек вала до разборки дизеля на ремонт можно не проверять, так как эти параметры являются следствием износа подшипников.

Для оценки технического состояния подшипников коленчатого вала пользуются способом, основанным на определении следующих диагностических параметров:
— давления масла в главной масляной магистрали;
— количества масла, протекающего через подшипники в единицу времени;
— шумов и стуков, возникающих от ударов в сопряжениях при работе дизеля;
— стуков, возникающих от соударения деталей в результате искусственного перемещения поршня и шатуна на величину зазоров в сопряжениях.

Широко распространено прослушивание дизеля во время его работы. С увеличением зазоров в подшипниках появляются характерные стуки, прослушиваемые в определенных зонах и при соответствующих режимах работы дизеля. Однако эти стуки отчетливо прослушиваются при значениях зазоров, превосходящих допускаемые. При этом количественная оценка зазоров зависит от слуховых качеств и опыта оператора. Хорошие результаты дает прослушивание стуков в неработающем дизеле при попеременном создании в надпоршневом пространстве разрежения и давления.

Определение количества газов, прорывающихся в картер

Количество газов, прорывающихся в картер, определяют индикатором расхода газов КИ-4887-П-ГОСНИТИ, Данный прибор снабжен устройством, позволяющим отсасывать газы из картера через измерительное устройство и измерять их расход при давлении в картере, равном атмосферному. Благодаря этому полностью устраняются утечки газов через неплотности картера и, следовательно, значительно повышается точность измерений.

Схема работы прибора КИ-4887-II представлена на рисунке. Состоит: из дроссельного расходомера постоянного перепада давления с жидкостным дифференциальным манометром для контроля давления в дросселирующем устройстве, дросселя и жидкостного манометра для регулирования и контроля давления на входе в расходомер, впускного и выпускного патрубков, трубопроводов с наконечниками и эжектора для отсоса газов, поступающих во впускной патрубок.

Дросселирующее устройство образовано двумя втулками. Плотное соединение этих втулок обеспечивается предварительной совместной притиркой их по конусным поверхностям и поджатием друг к другу распорной пружиной. Втулка жестко закреплена На корпусе, а втулка может поворачиваться относительно втулки. На половине окружности конусной части обеих втулок имеются поперечные щели, позволяющие плавно изменять площадь дросселирующего отверстия при повороте втулки.

Как известно, в дроссельных расходомерах расход газа пропорционален перепаду давления в дросселирующем устройстве и площади дросселирующего отверстия. При заданном перепаде давления в дросселирующем устройстве количество газов, проходящих через дросселирующее отверстие, будет зависеть только от площади этого отверстия, являющейся в данном случае мерой расхода. Шкала прибора тарируется при перепаде давления в дросселирующем, устройстве, равном 15 мм вод. ст. А это означает, что указанный перепад давления следует устанавливать при всех измерениях. Достигается это путем изменения площади дросселирующего отверстия. Перепад давления контролируют дифференциальным манометром, водяные столбики которого находятся в сверлениях прозрачного корпуса Сверления в нижней части сообщаются между собой, а в верхней - с впускным и выпускным патрубками дросселирующего устройства.

Впускной трубопровод, соединенный с патрубком, снабжен конусным наконечником, вставляемым в отверстие маслозаливной горловины проверямого дизеля.

Газы из картера можно отсасывать двумя способами, используя для этой цели разрежение во впускном воздушном тракте или энергию отработавших газов. В первом случае снимают с впускной трубы воздухоочистителя фильтр грубой очистки воздуха и опускают в трубу наконечник выпускного трубопровода прибора: При работе дизеля разрежение, создаваемое во впускном воздушном тракте, через выпускной трубопровод и выпускной патрубок 13 передается в дросселирующее отверстие. Во втором случае на выхлопной трубе устанавливают эжектор. При этом газы, проходя с большой скоростью в кольцевом пространстве между внутренней стенкой выхлопной трубы и эжектором, создают в нем разрежение, которое, как и в первом случае, передается в дросселирующее отверстие.

Отсос газов регулируют дросселем, поддерживая в картере атмосферное давление, которое контролируют с помощью жидкостного манометра, образованного жидкостными столбиками в сверлениях. При этом канал должен сообщаться с атмосферой, для чего необходимо вывинтить из него пробку.

Расход газов определяют по шкале, нанесенной л а наружной поверхности подвижной втулки. Размеры дросселирующего отверстия 6 рассчитаны на измерение расхода газов до превышающего 100 л/мин. Для увеличения диапазона измерений в дне неподвижной вгулки 4 имеются два дополнительных калиброванных отверстия, прикрываемых заслонкой. Если расход газов больше 100 л/мин, открывают отверстия 9, повернув отверткой заслонку. В этом случае к значению расхода, полученному по основной шкале, прибавляют постоянные значения расхода газов через эти отверстия, нанесенные на наружной поверхности подвижной втулки. Подключение дополнительных калиброванных отверстий дает возможность измерять расход газов до 1л/мин.

Чтобы измерить количество газов, прорывающихся в картер, пускают и прогревают дизель до температуры охлаждающей воды и картерного масла 65…90 °С.

Открывают маслозаливную горловину, закрывают отверстие сапуна и отверстие под масломерную линейку пробками.

Заливают в каналы дифманометра воду примерно на половину, вывинтив пробку из канала, которую не ставят на место до конца измерений. Полностью открывают дросселирующее отверстие поворотом втулки за маховичок против часовой стрелки и дроссель поворотом наружной втулки.

Подключают прибор к дизелю. Для этого опускают наконечник (рис. 1) выпускною трубопровода во впускную трубу воздухоочистителя, предварительно сняв фильтр грубой очистки воздуха, или же закрепляют на выхлопной трубе эжектор, присоединенный к наконечнику, и вставляют конусный резиновый наконечник впускного трубопровода в отверстие маслозаливной герловины.

Рис. 1. Определение количества газов, прорывающихся в картер, на тракторе МТЗ-80 прибором КИ-4887-П-ГОСНИТИ: 1 - наконечник; 2 - выпускной трубопровод; 3 - впускная труба воздухоочистителя; 4 - маслозаливная горловина; 5 - резиновый наконечник; 6 - впускной трубопровод

При работе дизеля на холостом ходу с помощью рычага управления скоростным режимом устанавливают номинальную частоту вращения коленчатого вала (табл.

Удерживая прибор в вертикальном положении, поворотом наружной втулки дросселя устанавливают одинаковый уровень воды в левом и правом каналах манометра. Затем, медленно поворачивая втулку за маховичок по часовой стрелке, добиваются такого положения, при котором уровень воды в канале был бы на 15 мм выше уровня в канале. Если после этого уровни воды в каналах окажутся разными, то поворотом наружной втулки дросселя 14 их необходимо выровнять. Затем по шкале прибора определяют расход газов.

Повышенный расход картерных газов может быть либо по причине чрезмерного износа деталей цилиндро-поршневой группы, либо вследствие закоксовывания или поломки поршневых колец в отдельных цилиндрах.

Чтобы выявить причину и определить вид и объем ремонта при количестве газов, превышающем допускаемое значение, следует проверить состояние каждого цилиндра в отдельности.

Для этого поочередно снимают каждую форсунку (при неработающем дизеле) с целыо декомпрессирования цилиндров и измеряют расход газов при одном декомпрессированном цилиндре и минимальной устойчивой частоте вращения коленчатого вала, устанавливая ее одинаковой при проверке каждого цилиндра.

При положительном значении AQ, возможны поломка или закоксовывание компрессионных колец, задиры на рабочей поверхности или чрезмерный износ гильзы и другие неисправности.

Ввиду сравнительно небольшой трудоемкости способа диагностирования отдельных цилиндров по разрежению в надпоршневом пространстве при прокрутке дизеля с помощью пускового устройства по сравнению с описанным способом при наличии соответствующего устройства (вакууманализатора) состояние отдельных цилиндров проверяют с помощью этого устройства.

Определение состояния отдельных цилиндров по величине разрежения

Состояние каждого цилиндра оценивают с помощью вакуум-анализатора КИ-5315-ГОСНИТИ по величине вакуумметрического давления (разрежения) в надпор-шневом пространстве.

Состоит: из вакуумметра, корпуса, впускного и выпускного клапанов и наконечника.

Для диагностирования цилиндро-поршневой группы вакуум-анализатор соединяют с надпоршневым пространством, плотно вставляя наконечник в отверстие для форсунки, и прокручивают коленчатый вал с помощью стартера или пускового двигателя. В момент движения поршня вниз на такте расширения в надпоршневом пространстве создается вакуумметрическое давление, под действием которого открывается впускной клапан. Благодаря этому вакуумметрическое давление из над-поршневого пространства передается вакуумметру, вызывая отклонение стрелки прибора на соответствующую величину.

При движении поршня вверх на такте сжатия воздух из надпоршневого пространства выталкивается в атмосферу через выпускной клапан. При этом впускной клапан закрыт.

Во время очередного хода поршня проверяемого цилиндра вниз выпускной клапан закроется, а впускной - откроется. Это повлечет за собой дальнейшее возрастание вакуумметрического давления. В тот момент, когда давление в системе цилиндр-вакуум-анализатор достигнет постоянной величины, т. е. станет равным максимальному вакуумметр аческому давлению в надпоршневом пространстве, показание вакуумметра стабилизируется.

Величина вакуумметрического давления, зафиксированная при стабильном положении стрелки вакуммет-ра, будет характеризовать состояние уплотнений в проверяемом цилиндре.

Усилие затяжки впускного клапана регулируют на заводе-изготовителе регулировочным винтом. Это усилие должно быть таким, чтобы обеспечивалось полное открытие клапана при диагностировании дизелей с предельным (выбраковочным) состоянием цилиндро-поршневой группы.

Для снятия вакуумметрического давления в полости вакуумметра предусмотрен специальный вентиль.

Состояние уплотнений в цилиндрах проверяют следующим образом.

Останавливают дизель и снимают с него форсунки. Прокручивая дизель и устанавливая поочередно в отверстие форсунок наконечник вакуум-анализатора, измеряют ва-куумметрическое давление в каждом цилиндре (рис. 2).

Разница меладу значением разрежения в отдельном цилиндре и средним значением разрелсе-ния в остальных цилиндрах должна быть не более 0,2 кгс/см2.

Рис. 2. Измерение вакуум-метрического давления в цилиндре дизеля вакуум-анализатором КИ-5315-ГОСНИТИ: 1 - наконечник; 2 - узел клапанов; 3 - трубка; 4 - вентиль; 5 - вакуумметр; б - рукоятка

Техническая экспертиза деталей цилиндро-поршневой группы

Если перечисленные выше диагностические параметры достигли предельных значений или превышают допускаемые в эксплуатации величины, то дизель разбирают для технической экспертизы путем осмотра и микрометража сопряжений цилиндро-поршневой группы и замены непригодных деталей.

Если после поступления с завода-изготовителя или из ремонта дизель вскрывают впервые, то в этом случае нередко заменяют лишь поршневые кольца. В даль-нейшем, при достижении предельных или превышении допускаемых в эксплуатации значений параметров состояния цилиндро-поршневой группы, ее заменяют полностью. В случае предельной разницы между количеством газов, прорывающихся в картер при декомпрессировании какого-либо цилиндра, и средним количеством газов, прорывающихся в картер при поочередном декомпрессировании остальных цилиндров, а также в случае предельной разницы между разрежением в каком-либо цилиндре и средним разрежением в остальных цилиндрах заменяют в указанном цилиндре непригодные детали (чаще всего поломанные или пригоревшие поршневые кольца).

После разборки дизеля состояние каждой детали и сопряжения цилиндро-поршневой группы оценивают по результатам их осмотра и микрометража. При этом измеряют износ гильзы цилиндров в верхнем и среднем рабочем поясе, зазоры между гильзами и юбками поршней, зазоры в стыках поршневых колец, высоту колец и канавок поршней, зазоры между бобышками поршней и поршневыми кольцами, а также между пальцами и втулками верхних головок шатунов. Для указанных целей применяют индикаторный нутромер, микрометр, мерительные плитки, индикатор часового типа, щупы. Результаты микрометража заносят в таблицу.

Если причиной разборки дизеля был чрезмерный прорыв газов в картер или чрезмерный угар картерного масла, а зазоры между юбками поршней и гильзами оказались в пределах допускаемых значений, то заменяют только поршневые кольца. Так как гильзы цилиндров больше всего изнашиваются в плоскости, перпендикулярной продольной оси дизеля, то в случае оставления на дизеле их рекомендуется поворачивать на 90° вокруг оси, с тем чтобы при дальнейшей эксплуатации наиболее изношенные поверхности изнашивались менее интенсивно. Если причиной разборки дизеля была неисправность в каком-либо цилиндре (например, поломка поршневых колец), то и в этом случае рекомендуется осмотреть всю цилиндро-поршневую группу и, если необходимо, заменить изношенные и неисправные детали.

Предварительная оценка состояния сопряжений по давлению масла в магистрали и стукам

Давление масла проверяют с помощью устройства КИ-5472-ГОСНИТИ, предназначенного для измерения давления в главной магистрали смазочной системы дизелей и в сливной магистрали гидравлической системы навесного устройства.

Состоит: из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера, служащего для сглаживания пульсаций масла при измерении давления, и сменных штуцеров (переходников). В нерабочем положении свободный конец рукава (ниппель) закрывают заглушкой.

Чтобы измерить давление в главной магистрали дизеля,. устройство подключают к корпусу масляного фильтра, предварительно отсоединив трубку (рис. 3) мембранного или же датчик логометрического манометра.

Пускают и прогревают дизель до нормального теплового состояния, после чего проверяют давление масла в магистрали сначала при номинальной, а затем при минимальной устойчивой частоте вращения коленчатого вала на холостом ходу.

Рис. 3. Измерение давления в главной масляной магистрали дизеля устройством КИ-5472-ГОСНИТИ: 1 - соединительный рукав; 2 --манометр; 3 - заглушка; 4- трубка штатного манометра; 5 - сменный штуцер; 6 - накидная гайка

Для попеременного создания в надпоршневом пространстве проверяемого цилиндра давления и вакуума служит распределительный кран с тремя трубопроводами и наконечник, присоединяемый к головке цилиндров вместо форсунки.

Электронный автостетоскоп ‘ГУ ПБеО-ООЗ представляет собой усилитель с пьезокристаллнческим датчиком и элементами питания, вмонтированными в пластмассовый корпус, имеющий гнезда для подключения стержня и телефона.

Усилитель питается от двух элементов ФБС-0,25 напряжением 3В. Телефон типа ТМ-4, потребляемый ток - 5 МА.

Для прослушивания объекта диагностирования автостетоскоп вынимают из футляра, ввертывают наконечник и вставляют штекер телефона в соответствующие гнезда, прикладывают наконечник к месту проверяемой составной части и закрепляют телефон на ухе. По окончании прослушивания телефон необходимо отключить, в противном случае элементы питания будут разряжаться.

С помощью автостетоскопа и описанного устройства прослушивают стуки в сопряжениях бобышки поршня - поршневой палец, поршневой палец - втулка верхней головки шатуна, шейка коленчатого вала - шатунный подшипник в следующем порядке.

Подключают к проверяемому цилиндру компрессор-но-вакуумную установку, как показано на рисунке 8. Для этого снимают с двигателя форсунки, устанавливают поршень проверяемого цилиндра в ВМТ и включают какую-либо передачу (для фиксации коленчатого вала от прокручивания). При закрытом кране устанавливают наконечник компрессорно-вакуумной установки в отверстие для форсунки проверяемого цилиндра и закрепляют его.

Включают компрессор и создают в ресиверах соответственно давление 2…2,5 кгс/см2 и разрежение 0,6…0,7 кгс/см2.

Регулятором давления устанавливают рабочее давление 2 кгс/см2.

Прикладывают наконечник автостетоскопа к блоку цилиндров в зоне поршневого пальца, открывают кранЗ установки и, попеременно создавая в надпоршневом пространстве разрежение и сжатие путем переключения кранов, прослушивают стуки в верхней головке шатуна и бобышках поршня.

Продолжая поддерживать в ресиверах заданное давление и разрежение и приложив наконечник стетоскопа к торцу коленчатого зала, прослушивают стуки в шатунном подшипнике.

Аналогично прослушивают стуки в указанных зонах остальных цилиндров при положении поршня в ВМТ на такте сжатия.

Если регулировка сливного клапана не дает положительных результатов, необходимо проверить производительность насоса и состояние редукционного клапана смазочной системы в мастерской на стенде.

К сожалению, на большинстве тракторов последних выпусков с двигателями водяного охлаждения масляные термометры отсутствуют. Это затрудняет контроль теплового состояния дизелей и нередко приводит к их переохлаждению, так как температура охлаждающей воды не всегда может служить критерием оценки теплового режима.

ПРИМЕР. При прогреве дизеля охлаждающая вода прогревается намного быстрее, чем картерное масло, особенно, если прикрыта шторка или жалюзи. Не зная температуры масла тракторист может преждевременно дать полную нагрузку, что повлечет за собой ухудшение условий работы кривошипно-иштунного механизма Кроме того, температура картерного масла является одним из основных факторов, влияющих на мощность и топливную экономичность дизеля. При определении этих показателей температура картерного масла должна быть не ниже 70 градусов С, так как при богее нижних значениях температуры масла резко возрастают механические потери, а следовательно, увеличивается погрешность измерений

Рис. 4. Измерение суммарного зазора в верхней головке шатуна и шатунном подшипнике устройством КИ-11140-ГОСНИТИ

Суммарный зазор измеряют с помощью устройства КИ-11НО-ГОСНИТИ. Состоит: из корпуса с закрепленным на нем индикатором часового типа, пневматического приемника, сменного фланца для крепления устройства в головке цилиндров вместо форсунки, уплотнения, направляющей штока, жестко соединенного с ножкой индикатора, и стопорного винта, служащего для фиксации направляющей в пневматическом прием» нике.

Чтобы измерить зазоры, снимают с дизеля форсунки. Устанавливают поршень проверяемого цилиндра в ВМТ на такте сжатия и стопорят коленчатый вал. Закрепляют устройство в форсуночном отверстии, предварительно ослабив стопорный винт и приподняв направляющую с индикатором и штоком вверх. Затем опускают направляющую до упора штока в днище поршня (с натягом) и фиксируют направляющую стопорным винтом (рис. 4).

К атегория: - ТО трактора

Стук и шумы в двигателе возникают в результате износа его основных деталей и появления между сопряженными деталями увеличенных зазоров. Стуки в двигателе прослушиваются при помощи стетоскопа, что требует определенного навыка. Обычно при большом износе вкладышей происходит выплавление его антифрикционного слоя, что сопровождается резким падением давления масла. В этом случае двигатель должен быть немедленно остановлен, так как дальнейшая его работа может привести к поломке деталей. Повышенный расход масла, перерасход топлива, появление дыма в отработавших газах (при нормальном уровне масла в картере) обычно появляются при залегании поршневых колец или износе колец цилиндров. Залегание кольца можно устранить без разборки двигателя, для чего в каждый цилиндр горячего двигателя следует залить на ночь через отверстие свечи зажигания по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель следует пустить, дать поработать 10-15 мин, после чего заменить масло.

Перед диагностированием двигатель следует прогреть до температуры охлаждающей жидкости (90+-5) С. Прослушивание стетоскопом проводят, прикасаясь острием наконечника звукочувствительного стержня в зоне сопряжения проверяемого механизма. Работу поршень-цилиндр прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю - стуки сильного глухого тона, усиливающиеся с увеличением нагрузки, свидетельствует о возможном увеличении зазора между поршнем и цилиндром, об изгибе шатуна, поршневого пальца и т.д. Сопряжение поршневое кольцо - канавка проверяют на уровнеНМТ хода поршня на средней частоте вращения КВ - слабый стук высокого тона свидетельствует об увеличенном зазоре между кольцами и канавками поршней, либо о чрезмерном износе или поломке колец. Сопряжение поршневой палец - втулка верхней головки шатуна проверяют на уровне ВМТ при малой частоте вращения КВ с резким переходом на среднюю. Сильный стук высокого тона, похожий на частые удары молотком по наковальне, говорит о повышенном износе деталей сопряжения. Работы сопряжения коленчатый вал - шатунный подшипник прослушивают на малой и средней частотах вращения КВ(ниже НМТ).

Глухой звук среднего тона сопровождает износ шатунных вкладышей. Стук коренных подшипников КВ прослушивают в этих же зонах (чуть ниже) при резком изменении частоты вращения КВ: сильный глухой стук низкого тона свидетельствует об износе коренных подшипников.

Проверка компрессии

Компрессию в цилиндрах определяют компрессометром, представляющим собой корпус с вмонтированным в него манометром. Манометр соединен с одним концом трубки, на другом конце которой имеется золотник с резиновым наконечником, плотно вставляемым в отверстие для свечи зажигания. Проворачивая коленчатый вал двигателя стартером или пусковой рукояткой, измеряют максимальное давление в цилиндре и сравнивают его с нормативными. Для бензиновых двигателей номинальные значения компрессии составляют 0,75...1,5 (7 - 15 кгс/cм2). Падение мощности двигателя возникает при износе или залегании в канавках поршневых колец, износе поршней и цилиндров, а также плохой затяжке головки цилиндров. Эти неисправности вызывают падение компрессии в цилиндре.

Расход сжатого воздуха, подаваемого в цилиндры

Для определения утечки сжатого воздуха из надпоршневого пространства применяют прибор К-69М. Воздух в цилиндры прогретого двигателя подают либо через редуктор 1 прибора, либо непосредственно из магистрали по шлангу 4 в цилиндр 7 через штуцер 6, ввернутый в отверстие для свечи или форсунки, к которому присоединяется шланг 3 при помощи быстросъемной муфты 5. В первом случае проверяют утечку воздуха или падение давления из-за не плотностей в каждом цилиндре двигателя. Для этого рукояткой редуктора 1 прибор настраивают так, чтобы при полностью закрытом клапане муфты 5 стрелка манометра находилась против нулевого деления, что соответствует давлению 0,16 М Па, а при полностью открытом клапане и утечке воздуха в атмосферу - против деления 100%. Относительную неплотность цилиндропоршневой группы проверяют при установке поршня проверяемого цилиндра в двух положениях: в начале и конце такта сжатия. Поршень от движения под давлением сжатого воздуха фиксируют, включая передачу в коробке передач автомобиля. Такт сжатия определяется свистком-сигнализатором, вставляемым в отверстие свечи (форсунки). Состояние поршневых колец и клапанов оценивают по показаниям манометра 2 при положении поршня в в.м.т., а состояние цилиндра (износ цилиндра по высоте) - по показаниям манометра при положении поршня в начале и конце такта сжатия и по разности этих показаний. Полученные данные сравнивают со значениями, при которых дальнейшая эксплуатация двигателя недопустима. Предельно допустимые значения утечки воздуха для двигателей с различными диаметрами цилиндров указаны в инструкции прибора. Чтобы определить место утечки (неисправность), воздух под давлением 0,45-06 МПа подают из магистрали по шлангу 4 в цилиндры двигателя. Поршень при этом устанавливают в конце такта сжатия в верхней мертвой точке. Место прорыва воздуха через неплотность определяют прослушиванием при помощи фонендоскопа. Утечка воздуха через клапаны двигателя обнаруживается визуально по колебанию пушинок индикатора, вставляемого в отверстие свечи (форсунки) одного из соседних цилиндров, где открыты в данном положении клапаны. Утечка воздуха через поршневые кольца определяется только прослушиванием при положении поршня в н.м.т. в зоне минимального износа цилиндров. Утечка через прокладку головки цилиндров обнаруживается по пузырькам в горловине радиатора или в плоскости разъема. Суммарный зазор в верхней головке шатуна и шатунном подшипнике Измерение суммарных зазоров в верхней головке шатуна и шатунном подшипнике является еще одним результативным методом проверки состояния кривошипно-шатунного механизма.

В продолжение темы:
Дтп

Атомные подводные лодки Проекта 1910 (NATO: Uniform) начали проектироваться в 1972 году, в конструкторском бюро Малахит. Создание первой АПЛ класса началось в 1977 году....

Новые статьи
/
Популярные