Определение функции и способы ее задания. Понятие функции способы задания функции Различные способы задания функции

Понятие функции является одним из основных понятий современной математики. С этим понятием часто встречаются при изучении реальных процессов в природе, науке и технике. С помощью различных функций могут быть описаны многие процессы и явления реального мира.

Определение. Отображения , где будем называть (вещественной) функцией действительного переменного. - область определения - совокупность всех значений независимой переменной х, для которых функция определена.

Множество значений f или образ f .

Определение. Если каждому элементу х множества X () ставится в соответствие вполне определенный элемент у множества Y , то говорят, что на множестве X задана функция.

y = f(x), y = F(x) - функциональная зависимость х и у.

f, F - характеристики функции, х - независимая переменная (аргумент),

у - зависимая переменная.

Рассматривают три способа задания функции: аналитический, табличный и графический.

1. Аналитический .

Способ задания функции при помощи формулы называется аналитическим.Этот способ является основным в мат. анализе, но на практике не удобен.

2. Табличный способ задания функции .

Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

3. Графический способ задания функции .

Функция у = f (х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями

Классификация функций.

Элементарные функции разделяют на алгебраические и неалгебраические (трансцендентные).

Алгебраической называют функцию, в которой над аргументом производится конечное число алгебраических действий.

К ним относятся:

Целая рациональная функция (многочлен, полином)

Дробно-рациональная функция - отношение двух многочленов

Иррациональная функция (среди действий над аргументом есть извлечение корня).

К трансцендентным относятся : показательная, логарифмическая , тригонометрические и обратные тригонометрические функции.

Четные и нечетные функции .

Функция у = f(х ) называется четной или нечетной , если она определена на множестве симметричном относительно нулевой точки и обладает на нем свойством f(-x)=f(x) или свойством f(-x) = -f(x) . В противном случае функцией общего вида. График четной функции симметричен относительно оси ординат, график нечетной симметричен относительно начала координат.

Произведения двух четных или двух нечетных функций есть функция четная, произведения четной функции на нечетную есть нечетная функция

Монотонные функции.


Пусть (a,b) промежуток с концами в точках a и b , где a.

Функция у = f(х ) называется возрастающей (убывающей) на промежутке (a,b) , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции.

Пусть и .

Тогда функция возрастает на промежутке X , если (запись на (a,b )) и убывает , если (запись на (a,b )) (см. рис. 1).

Запись и

Функции возрастающие и убывающие называется монотонными . К монотонным функциям относятся также неубывающие и невозрастающие функции.

Ограниченные функции .

Функция называется ограниченной на промежутке (a,b) , если такое, что

В противном случае функция называется неограниченной.

Периодическая функция.

Функция называется периодической с периодом , если справедливо .

>>Математика: Способы задания функции

Способы задания функции

Приводя в предыдущем параграфе различные примеры функций, мы несколько обеднили само понятие функции .

Ведь задать функцию - это значит указать правило, которое позволяет по произвольно выбранному значению х из Б(0 вычислить соответствующее значение у. Чаще всего это правило связано с формулой или с несколькими формулами - такой способ задания функции обычно называют аналитическим. Все функции, рассмотренные в § 7, были заданы аналитически. Между тем есть другие способы задания функции, о них и пойдет речь в настоящем параграфе.

Если функция была задана аналитически и нам удалось построить график функции, то мы фактически перешли от аналитического способа задания функции к графическому. Обратный же переход удается осуществить далеко не всегда. Как правило, это довольно трудная, но интересная задача.

Не всякая линия на координатной плоскости может рассматриваться как график некоторой функции. Например, окружность , заданная уравнением х 2 + у 2 - 9 (рис. 51), не является графиком функции, поскольку любая прямая х = а, где | а | <3, пересекает эту линию в д в у х точках (а для задания функции таких точек должно быть не более одной, т.е. прямая х = а должна пересекать линию F только в одной точке либо вообще не должна ее пересекать).

В то же время если эту окружность разрезать на две части - верхнюю полуокружность (рис. 52) и нижнюю полуокружность (рис. 53), - то каждую из полуокружностей можно считать графиком некоторой функции, причем в обоих случаях несложно от графического способа задания функции перейти к аналитическому.

Из уравнения х 2 + у 2 = 9 находим у 2 = 9 - х 2 и далее Графиком функции является верхняя полуокружность окружности х 2 + у 2 =9 (рис. 52), а графиком функции является нижняя полуокружность окружности х 2 + у 2 = 9 (рис. 53).


Этот пример позволяет обратить внимание на одно существенное обстоятельство. Посмотрите на график функции (рис. 52). Сразу ясно, что D(f) = [-3, 3]. А если бы речь шла об отыскании области определения аналитически заданной функции Тогда пришлось бы, как мы это делали в § 7, тратить время и силы на решение неравенства Потому-то обычно и стараются работать одновременно и с аналитическим, и с графическим способами задания функций. Впрочем, за два года изучения курса алгебры в школе вы к этому уже привыкли.

Кроме аналитического и графического, на практике применяют табличный способ задания функции. При этом способе приводится таблица, в которой указаны значения функции (иногда точные, иногда приближенные) для конечного множества значений аргумента. Примерами табличного задания функции могут служить таблицы квадратов чисел, кубов чисел, квадратных корней и т.д.

Во многих случаях табличное задание функции является удобным. Оно позволяет найти значение функции для имеющихся в таблице значений аргумента без всяких вычислений.

Аналитический, графический, табличный - наитабличный, более простые, а потому наиболее популярные словесный задания функции, для наших нужд этих способов вполне достаточно. На самом деле в математике имеется довольно много различных способов задания функции, но мы познакомим вас еще только с одним способом, который используется в весьма своеобразных ситуациях. Речь идет о словесном способе, когда правило задания функции описывается словами. Приведем примеры.

Пример 1.

Функция у = f(х) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х > 0 ставится в соответствие первый знак после запятой в десятичной записи числа х. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой - цифра 5); если х = 13,002, то f(х) = 0; если то, записав в виде бесконечной десятичной дроби 0,6666..., находим f(х) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000... , и мы видим, что первый десятичный знак после запятой есть 0 (вообще-то верно и равенство 15 = 14,999... , но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).

Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное значение первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. У этой функции
Пример 2.

Функция у = f(х) задана на множестве всех действительных чисел с помощью следующего правила: каждому числу х ставится в соответствие наибольшее из всех целых чисел, которые не превосходят х. Иными словами, функция у = f(х) определяется следующими условиями:

а) f(х) - целое число;
б) f(х) < х (поскольку f(х) не превосходит х);
в) f(х) + 1 > х (поскольку f(х) - наибольшее целое число, не превосходящее х, значит, f(х) + 1 уже больше, чем г). Если, скажем, х = 2,534, то f(х) = 2, поскольку, во-первых, 2 - целое число, во-вторых, 2 < 2,534 и, в-третьих, следующее целое число 3 уже больше, чем 2,534. Если х = 47, то /(х) = 47, поскольку, во-первых, 47 - целое число, во-вторых, 47< 47 (точнее, 47 = 47) и, в-третьих, следующее за числом 47 целое число 48 уже больше, чем 47. А чему равно значение f(-0,(23))? Оно равно -1. Проверяйте: -1 - наибольшее из всех целых чисел, которые не превосходят числа -0,232323....

У этой функции (множество целых чисел).

Функцию, о которой шла речь в примере 2, называют целой частью числа; для целой части числа х используют обозначение [х]. Например, = 2, = 47, [-0,(23)] = -1. Очень своеобразно выглядит график функции у = [х] (рис. 54).


Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если поезд движется с постоянной скоростью v км/ч, то путь s км, пройденный за время t, вычисляется по формуле s = vt. Здесь v обозначает какое – то число, а s и t изменяются в каждый момент движения. Будем находить при данной постоянной скорости величину s в зависимости от времени движения t. Тогда t называется независимой переменной или аргументом , s называется зависимой переменной или функцией. Зависимость между аргументом t и функцией s записывается s(t).

Запись s(t) означает, что берутся произвольные отрезки пути и устанавливается, за какое время (при данной постоянной скорости v) может быть пройден этот путь. Например, если автомобиль движется со скоростью 50 км/ч, то на путь 100 км потребуется 100 км: 50 км/ч = 2 ч, на путь в 25 км ему потребуется 1/2 ч, на путь в 150 км/ч – 3 ч.

Если даны две переменные х и y , то говорят, что переменная y является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого значения х однозначно определить значение у.

Запись F = у(х) означает, что рассматривается функция, позволяющая для любого значения независимой переменной х (из числа тех, которые аргумент х вообще может принимать) находить соответствующее значение зависимой переменной у.

Способы задания функции.

Функция может быть задана формулой, например:

у = 3х 2 – 2.

Давая произвольные значения независимой переменной х, вычисляют с помощью этой формулы соответствующие значения зависимой переменной у. Например, если х = -0,5, то с помощью формулы находим, что соответствующее значение у равно

3 · (-0,5) 2 – 2 = -1,25

Взяв любое значение, которое может принимать аргумент х в формуле у = 3х 2 – 2, можно с её помощью вычислить то единственное значение функции, которое ему соответствует.

Функция может быть задана, например, таблицей:

С помощью данной таблицы можно установить, что значению аргумента – 1 соответствует значение функции 1; значению х = 2 соответствует у = 10 и т.д. При этом любому значению аргумента, включённого в таблицу, соответствует только одно значение функции.

Функция может быть задана графиком. С помощью графика можно установить, какое значение функции соответствует указанному значению аргумента. Обычно это приближённое значение функции.

Свойства функции, которые необходимо учитывать при построении её графика:

1) Область определения функции.

Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

2) Промежутки возрастания и убывания функции.

Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

3) Нули функции.

Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

4) Чётность и нечётность функции.

Функция называется чётной, если для всех значений аргумента из области определения

у(-х) = у(х).

График чётной функции симметричен относительно оси ординат.

Функция называется нечётной , если для всех значений аргумента из области определения

у(-х) = -у(х).

График чётной функции симметричен относительно начала координат.

Многие функции не являются ни чётными, ни нечётными.

5) Периодичность функции.

Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

у(х + Р) = у(х).

Остались вопросы? Не знаете, как построить график функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Лекция: Понятие функции. Основные свойства функции.

Преподаватель: Горячева А.О.

О. : Правило (закон) соответствия между множествами X и Y, по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией .

Функция считается заданной, если:

Задана область определения функции X ;

Задана область значений функции Y ;

Известно правило (закон) соответствия, причем такое, что для каждого значения аргумента может быть найдено только одно значение функции. Это требование однозначности функции является обязательным.

О. : Множество X всех допустимых действительных значений аргументаx, при которых функция y = f (x) определена, называется областью определения функции .

Множество Y всех действительных значений y, которые принимает функция, называется областью значений функции .

Рассмотрим некоторые способы задания функций.

Табличный способ . Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Графический способ . Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Аналитический способ . Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Словесный способ . Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и q принадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале ; 2) (- ;-2] ; 4) [-2;0]

5. Найдите все значения х, при которых функция принимает отрицательные значения (рис. д):

1) (-2;0); 2) [-6;6]; 3) (- ;0); 4) (- ;0) (0;+ )


е) ж)

6. Найдите все значения х, при которых функция принимает неотрицательные значения (рис. е):

1) (рис. и).

1)-1

2) 3

3) 5

4) 6

з) и)

9. При каких значениях аргумента y<0 (рис. к)?

1) [-4;0); 2) (-3;0); 3) (-3;1); 4) (0;1)



к) л)

10. При каких значениях х значение функции положительно (рис. л)?

В продолжение темы:
Купля-продажа

Парагвайская война 1864-1870 годов, захватническая война Аргентины, Бразилии и Уругвая против Парагвая. Непосредств. причиной П. в. явилось вторжение бразильской армии в...

Новые статьи
/
Популярные