Вершина многоугольника это. Вершины многоугольника это Что такое стороны многоугольника

Определение

Вершина угла

Вершина угла - это точка, окуда берут начало два луча.

Вершина угла - это точка, откуда берут начало два луча ; где сходятся два отрезка; где две прямые пересекаются; где любая комбинация лучей, отрезков и прямых, образующих две (прямолинейные) «стороны», которые сходятся в одной точке .

Вершина многоугольника многогранника

В многоугольнике вершина называется «выпуклой », если внутренний угол многоугольника меньше π радиан (180° - два прямых угла). В противном случае вершина называется «вогнутой».

Более обще, вершина многогранника является выпуклой, если пересечение многогранника с достаточно малой сферой , имеющей вершину в качестве центра, представляет собой выпуклую фигуру; в противном же случае вершина является вогнутой.

Вершины многогранника связаны с вершинами графа , поскольку многогранника является графом, вершины которого соответствуют вершинам многогранника , а следовательно, граф многогранника можно рассматривать как одномерный симплициальный комплекс , вершинами которого служат вершины графа. Однако, в теории графов вершины могут иметь менее двух инцидентных рёбер , что обычно не разрешается для вершин геометрических. Также имеется связь между геометрическими вершинами и вершинами кривой , точками экстремумов её кривизны - вершины многоугольника в некотором смысле являются точками бесконечной кривизны, и, если многоугольник приблизить гладкой кривой, точки экстремальной кривизны будут лежать вблизи вершин многоугольника . Однако, приближение многоугольника с помощью гладкой кривой даёт дополнительные вершины в точках минимальной кривизны.

Вершины плоских мозаик

«Уши»

«Рты»

Основная вершина x i {\displaystyle x_{i}} простого многоугольника P {\displaystyle P} называется «ртом», если диагональ [ x i − 1 , x i + 1 ] {\displaystyle } лежит вне P {\displaystyle P} .

Число вершин многогранника

Любая поверхность трёхмерного выпуклого многогранника имеет эйлерову характеристику :

V − E + F = 2 , {\displaystyle V-E+F=2,}

где V {\displaystyle V} - число вершин, E {\displaystyle E} - число рёбер, а F {\displaystyle F} - число граней. Это равенство известно как уравнение Эйлера . К примеру, куб имеет 12 рёбер и 6 граней, а потому - 8 вершин: 8 − 12 + 6 = 2 {\displaystyle 8-12+6=2} .

Вершины в компьютерной графике

В компьютерной графике объекты часто представляются как триангулированные многогранники , в которых вершинам объекта сопоставляются не только три пространственные координаты , но и другая необходимая для правильного построения изображения объекта графическая информация, такая как цвет, отражательная способность , текстура , нормали вершин . Эти свойства используются при построении изображения с помощью

    В Викисловаре есть статья «вершина» Вершина верхняя точка чего либо. Термин вершина может также означать: В топографии … Википедия

    ВЕРШИНА - (1) В. конуса точка пересечения образующих конуса; (2) В. многогранника точка, в кото рой сходятся соседние рёбра многогранника; (3) В. многоугольника точка, в которой сходятся две соседние стороны многоугольника; (4) В. параболы точка… … Большая политехническая энциклопедия

    ВЕРШИНА, в математике точка, в которой сходятся две стороны треугольника или другого многоугольника, либо пересекаются три и более сторон пирамиды или другого многогранника. Вершиной называют также верхнюю точку конуса … Научно-технический энциклопедический словарь

    Построение выпуклой оболочки методом «разделяй и властвуй» алгоритм построения выпуклой оболочки. Содержание 1 Описание 2 Определения 3 Реализация … Википедия

    Построение выпуклой оболочки методом «разделяй и властвуй» алгоритм построения выпуклой оболочки. Содержание 1 Описание 2 Определения 3 Реализация 4 Сложность алгоритма … Википедия

    Проверка принадлежности данной точки данному многоугольнику На плоскости даны многоугольник и точка. Многоугольник может быть как выпуклым, так и невыпуклым. Требуется решить вопрос о принадлежности точки многоугольнику. Благодаря тому, что… … Википедия

    Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

    Дискретная группа голоморфных преобразований (открытого) круга Кна сфере Римана, т. е. круга или полуплоскости на комплексной плоскости. Чаще всего в качестве Кберут верхнюю полуплоскость или единичный круг В первом случае элементы Ф. г. являются … Математическая энциклопедия

Понятие многоугольника. Что такое многоугольник

Многоуго́льник - это геометрическая фигура, представляющая собой замкнутую ломаную линию.

Существуют три варианта определения многоугольников:

  • Многоугольник - это плоская замкнутая ломаная линия;
  • Многоугольник - это плоская замкнутая ломаная линия без самопересечений;
  • Многоугольник - это часть плоскости, которая ограничена замкнутой ломаной.

Вершины ломаной называются вершинами многоугольника , а отрезки - сторонами многоугольника .

Вершины многоугольника называются соседними , если они являются концами одной из его сторон.

Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями .

Углом (или внутренним углом) многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, и находящийся во внутренней области многоугольника.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разность между 180° и внутренним углом

Многоугольник называют выпуклым , при условии, что одно из следующих условий является верным:

  • Выпуклый многоугольник лежит по одну сторону от любой прямой, соединяющей его соседние вершины;
  • Выпуклый многоугольник является пересечением нескольких полуплоскостей;
  • Любой отрезок с концами в точках, принадлежащих выпуклому многоугольнику, полностью ему принадлежит.

Выпуклый многоугольник называется правильным , если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и правильный пятиугольник.

Выпуклый многоугольник называется вписанным в окружность, если все его вершины лежат на одной окружности.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

Классификация (виды) многоугольников

Классификация многоугольников по видам может быть по многим свойствам, самые главные из них:

  • количество вершин
  • выпуклость
  • правильность
  • возможность вписать или описать окружность
Многоугольник с тремя вершинами называется треугольником (см. треугольник), многоугольник с четырьмя вершинами называется четырехугольник (см. четырехугольник) и так далее по количеству вершин.

Выпуклый многоугольник лежит всегда по одну сторону от прямой, которая содержит любую из его сторон. (см. выше)

У правильного многоугольника равны все стороны и углы. Благодаря этому, они обладают некоторыми особыми свойствами (см. квадрат).

Самопересекающиеся многоугольники также могут быть правильными. Например, пентаграмма ("пятиконечная звезда").

Также многоугольники можно различать по отношению к возможности вписать в многоугольник или описать окружность около многоугольника. Могут быть многоугольники, вокруг которых нельзя описать окружность, а также вписать ее. Вместе с тем, вокруг любого треугольника всегда можно описать окружность .

Свойства многоугольника

  • Сумма внутренних углов n-угольника равна (n − 2)π.
  • Сумма внутренних углов правильного n-угольника равна 180(n − 2).
  • Число диагоналей всякого многоугольника равно n(n − 3) / 2, где n - число сторон.

Существуют разные точки зрения на то, что считать многоугольником. В школьном курсе геометрии используют одно из следующих определений.

Определение 1

Многоугольник

— это фигура, составленная из отрезков

так, что смежные отрезки (то есть соседние отрезки с общей вершиной, например, A1A2 и A2A3) не лежат на одной прямой, а несмежные отрезки не имеют общих точек.

Определение 2

Многоугольником называется простая замкнутая .

Точки

называются вершинами многоугольника , отрезки

сторонами многоугольника .

Сумма длин всех сторон называется периметром многоугольника .

Многоугольник, который имеет n вершин (а значит, и n сторон) называется n — угольником .

Многоугольник, который лежит в одной плоскости, называется плоским . Когда говорят о многоугольнике, если не сказано иначе, подразумевается, что речь идёт о плоском многоугольнике.

Две вершины, принадлежащие одной стороне многоугольника, называются соседними . Например, A1 и A2, A5 и A6 — соседние вершины.

Отрезок, который соединяет две несоседние вершины, называется диагональю многоугольника .

Выясним, сколько диагоналей имеет многоугольник.

Из каждой из n вершин многоугольника исходит n-3 диагонали

(всего вершин n. Не считаем саму вершину и две соседние, которые не образуют с данной вершиной диагонали. Для вершины A1, например, не учитываем саму A1 и соседние вершины A2 и A3).

Таким образом, каждой из n вершин соответствует n-3 диагонали. Поскольку одна диагональ относится сразу к двум вершинам, чтобы найти количество диагоналей многоугольника, надо произведение n(n-3) разделить пополам.

Следовательно, n — угольник имеет

диагонали.

Любой многоугольник делит плоскость на две части — внутреннюю и внешнюю области многоугольника. Фигуру, состоящую из многоугольника и его внутренней области, также называют многоугольником.

Любая диагональ делит на два многоугольника и. За и обозначим количество вершин в и соответственно. Многоугольник является -монотонным, если в нём отсутствуют split и merge вершины.

ВЕРШИНА - ВЕРШИНА, в математике точка, в которой сходятся две стороны треугольника или другого многоугольника, либо пересекаются три и более сторон пирамиды или другого многогранника. Алгоритм точки в многоугольнике - Проверка принадлежности данной точки данному многоугольнику На плоскости даны многоугольник и точка. Многоугольник может быть как выпуклым, так и невыпуклым.

ДИАГОНАЛЬ - (греч., от dia чрез, и gonia угол). 1) прямая линия, соединяющая в прямолинейной фигуре вершины двух углов, не лежащие на одной прямой. Определение. Многоугольник - это геометрическая фигура, ограниченная со всех сторон замкнутой ломаной линией, состоящая из трех и более отрезков (звеньев). Отрезки (звенья) замкнутой ломаной линии называются сторонами многоугольника, а общие точки двух отрезков - его вершинами.

Определение. Четырехугольник - это плоская геометрическая фигура, состоящая из четырех точек (вершин четырехугольника) и четырех последовательно соединяющих их отрезков (сторон четырехугольника). У четырехугольника никогда на одной прямой не лежат три вершины. Прямоугольник - это четырехугольник, у которого все углы прямые. Многоугольником может называться замкнутая ломаная с самопресечениями и правильные звёздчатые многоугольники.

Линии и многоугольники

1) β n-угольника β-стороной или γ-стороной в соответствии с тем, какой угол примыкает к её левому концу (если смотреть изнутри). Если он ориентирован не так, как ABC, то его верхняя сторона, равная и параллельная AB, является стороной P, а тогда n чётно (в правильном нечётноугольнике нет параллельных сторон).

Многоугольник, заданный одной ломаной

Докажем что из каждой вершины многоугольника выходит не меньше двух диагоналей. Но тогда каждая сторона n-угольника лежит в треугольнике разбиения, содержащем ещё одну его сторону. Дан выпуклый многоугольник, никакие две стороны которого не параллельны.

Таким образом, углы соответствующие разным сторонам, не накладываются. Будем двигать прямую, параллельную m, и смотреть на длину отрезка, высекаемого на ней многоугольником.

Цвет заливки многоугольника

Триангуляция любого многоугольника не единственна. В этом можно убедиться из примера на рисунке. Простым многоугольником является фигура, ограниченная одной замкнутой ломаной, стороны которой не пересекаются.

Задание стиля многоугольника

У любого простого -вершинного многоугольника всегда существует триангуляция, причём количество треугольников в ней независимо от самой триангуляции. В общем случае в произвольном -угольнике всего возможных вариантов построения диагоналей. Для некоторых классов многоугольников предыдущую оценку можно улучшить. Например, если многоугольник выпуклый, то достаточно лишь выбирать одну его вершину и соединять со всеми остальными, кроме его соседей.

Тогда докажем, что содержит split и merge вершины. Чтобы сделать многоугольник монотонным, нужно избавиться от split и merge вершин путём проведения непересекающихся дигоналей из таких вершин. Рассмотрим горизонтальную заметающую прямую, будем перемещать её сверху вниз вдоль плоскости на которой лежит исходный многоугольник. Будем останавливать её в каждой вершине многоугольника.

Добавление многоугольника на карту

Пусть и - ближайшее левое и правое ребро относительно split вершины, которые пересекает в данный момент. Тип вершины, хранящийся в не имеет значения. Таким образом, чтобы построить диагональ для split вершины нужно обратиться к указателю её левого ребра, которое пересекает в данный момент.

В подходе, описанном выше, требуется находить пересечения заметающей прямой и левых ребёр многоугольника. Создадим приоритетную очередь из вершин, в которой приоритетом будет -координата вершины. Если две вершины имеют одинаковые -координаты, больший приоритет у левой. Вершины будут добавляться на «остановках» заметающей прямой.

Отсюда не пересекает ни одну из сторон в посторонних точках. Поскольку внутри никаких вершин вершин находиться не может, и оба конца любой добавленной ранее диагонали должны лежать выше, диагональ не может пересекать никакую из ранее добавленных диагоналей.

Будем проходить сверху вниз по вершинам многоугольника проводя диагонали где это возможно. Следовательно, наш многоугольник лежит в полосе с границами b и c, откуда получаем, что P – наиболее удаленная от прямой b, содержащей сторону a , вершина многоугольника.

В продолжение темы:
Советы

Время чтения: 11 мин.Почки – это парный орган, имеющий тонкую структуру, поэтому малейшее изменение в нормальном течении каких-либо внутренних процессов приводит к заметным...

Новые статьи
/
Популярные