Вторичные амины химические свойства. Предельные первичные амины

Амины являются единственным классом органических соединений обладающих заметной основностью. Однако амины - слабые основания. Теперь будет полезным вернуться к табл. 12-1, чтобы вспомнить три определения кислот и оснований. В соответствии с тремя определениями основности можно выделить три аспекта химического поведения аминов.

1. Амины реагируют с кислотами, выступая как акцепторы протонов:

Поэтому амины являются основаниями Бренстеда. 2. Амины являются донорами электронной пары (основаниями Льюиса):

3. Водные растворы аминов имеют следовательно, амины при взаимодействии с водой способны генерировать гидроксид-анионы

Поэтому амины являются основаниями Аррениуса. Хотя все амины являются слабыми основаниями, их основность зависит от природы и числа углеводородных радикалов, связанных с атомом азота. Алкиламины гораздо основнее, чем ароматические амины. Среди алкиламинов наиболее основными являются вторичные, несколько менее основны первичные, затем идут третичные амины и аммиак. В целом основность убывает в ряду:

Мерой основности вещества является константа основности которая представляет собой константу равновесия взаимодействия амина с водой (см. выше определение основности по Аррениусу). Поскольку вода присутствует в большом избытке, ее концентрация не фигурирует в выражении константы основности:

Чем сильнее основание, тем большее число протонов будет оторвано от молекул воды и тем выше будет концентрация гидроксид-ионов в растворе. Таким образом, более сильные основания характеризуются

большими значениями К Значения для некоторых аминов приведены ниже:

Эти величины иллюстрируют ту связь основности аминов с их строением, о которой шла речь выше. Наиболее сильным основанием является вторичный диметиламин, а наиболее слабым-ароматический амин анилин.

Ароматические амины являются весьма слабыми основаниями, поскольку неподеленная электронная пара атома азота (которая и определяет основные свойства аминов) взаимодействует с -электронным облаком ароматического ядра и вследствие этого менее доступна для протона (или другой кислоты). Более высокая основность вторичных аминов по сравнению с первичными объясняется тем, что алкильные группы, благодаря наличию у них положительного индуктивного эффекта, подают электроны по -связям на атом азота, что облегчает обобществление неподеленной электронной пары. Две алкильные группы подают электроны на атом азота сильнее, чем одна, поэтому вторичные амины являются более сильными основаниями. Исходя из этого, можно было бы ожидать, что третичные амины - еще более сильные основания, чем вторичные. Однако это предположение оправдывается только для газовой фазы, а в водном растворе основность третичных аминов не столь велика. Вероятно, это объясняется эффектами сольватации.

Амины являются слабыми органическими основаниями. Их основность определяется числом и природой органических заместителей, соединенных с атомом азота. Наличие ароматического кольца резко понижает основность (величину аминов, Вторичные амины являются более сильными основаниями, чем первичные и третичные.

Так как амины, являясь производными аммиака, имеют сходное с ним строение (т.е. имеют неподеленную пару электронов в атоме азота), то они и проявляют подобные ему свойства. Т.е. амины, как и аммиак, являются основаниями, так как атом азота может предоставлять электронную пару для образования связи с электроннедостаточными частицами по донорно-акцепторному механизму (соответствие определению основности по Льюису).

I. Свойства аминов как оснований (акцепторов протонов)

1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

CH 3 NH 2 + H 2 O CH 3 NH 3 + + OH −

Анилин с водой практически не реагирует.

Водные растворы имеют щелочной характер:

Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота.

Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I -эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном.

2. Взаимодействуя с кислотами, амины образуют соли:

C 6 H 5 NH 2 + HCl → (C 6 H 5 NH 3)Cl

хлорид фениламмония

2CH 3 NH 2 + H 2 SO 4 → (CH 3 NH 3) 2 SO 4

сульфат метиламмония

Соли аминов – твердые вещества, хорошо растворимые в воде и плохо растворимы в неполярных жидкостях. При реакции с щелочами выделяются свободные амины:

Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с π-электронами ароматического ядра, что уменьшает электронную плотность на атоме азота (-М-эффект). Напротив, алкильная группа является хорошим донором электронной плотности (+I-эффект)..

или

Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот. Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H 2 SO 4), а его водный раствор не окрашивает лакмус в синий цвет.

У атома азота в молекулах аминов есть неподеленная пара электронов, которая может участвовать в образовании связи по донорно-акцепторному механизму.

анилин аммиак первичный амин вторичный амин третичный амин

электронная плотность на атоме азота возрастает.

Из-за наличия в молекулах неподеленной пары электронов амины, как и аммиак, проявляют основные свойства.

анилин аммиак первичный амин вторичный амин

основные свойства усиливаются, из-за влияния типа и числа радикалов.

C 6 H 5 NH 2 < NH 3 < RNH 2 < R 2 NH < R 3 N (в газовой фазе)

II. Окисление аминов

Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени. Ароматические амины самопроизвольно окисляются на воздухе. Так, анилин быстро буреет на воздухе вследствие окисления.

4СH 3 NH 2 + 9O 2 → 4CO 2 + 10H 2 O + 2N 2

4C 6 H 5 NH 2 + 31O 2 → 24CO 2 + 14H 2 O + 2N 2

III. Взаимодействие с азотистой кислотой

Азотистая кислота HNO 2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO 2 , как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:

KNO 2 + HCl → НNO 2 + KCl

или NO 2 − + H + → НNO 2

Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.

· Первичные алифатические амины c HNO 2 образуют спирты:

R-NH 2 + HNO 2 → R-OH + N 2 + H 2 O

  • Огромное значение имеет реакция диазотирования первичных ароматических аминов под действием азотистой кислоты, получаемой по реакции нитрита натрия с соляной кислотой. А в последствии образуется фенол:

· Вторичные амины (алифатические и ароматические) под действием HNO 2 превращаются в N-нитрозопроизводные (вещества с характерным запахом):

R 2 NH + H-O-N=O → R 2 N-N=O + H 2 O

алкилнитрозамин

· Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.

IV. Особые свойства:

1. Образование комплексных соединений с переходными металлами:

2. Присоединение алкилгалогенидов Амины присоединяют галогеналканы с образованием соли:

Обрабатывая получившуюся соль щелочью, можно получить свободный амин:

V. Ароматическое электрофильное замещение в ароматических аминах (реакция анилина с бромной водой или с азотной кислотой):

В ароматических аминах аминогруппа облегчает замещение в орто- и пара-положениях бензольного кольца. Поэтому галогенирование анилина происходит быстро и в отсутствие катализаторов, причем замещаются сразу три атома водорода бензольного кольца, и выпадает белый осадок 2,4,6-триброманилина:

Эта реакция бромной водой используется как качественная реакция на анилин.

В этих реакциях (бромирование и нитрование) преимущественно образуются орто - и пара -производные.

4. Способы получения аминов.

1. Реакция Гофмана . Один из первых методов получения первичных аминов − алкилирование аммиака алкилгалогенидами:

Это не самый лучший метод, так как в результате получается смесь аминов всех степеней замещения:

и т.д. Алкилирующими агентами могут выступать не только алкилгалогениды, но и спирты. Для этого смесь аммиака и спирта пропускают над оксидом алюминия при высокой температуре.

2. Реакция Зинина - удобный способ получения ароматических аминов при восстановлении ароматических нитросоединений. В качестве восстановителей используются: H 2 (на катализаторе). Иногда водород генерируют непосредственно в момент реакции, для чего обрабатывают металлы (цинк, железо) разбавленной кислотой.

2HCl + Fe (стружка) → FeCl 2 + 2H

C 6 H 5 NO 2 + 6[H] C 6 H 5 NH 2 + 2H 2 O.

В промышленности эта реакция протекает при нагревании нитробензола с водяным паром в присутствии железа. В лаборатории водород "в момент выделения" образуется по реакции цинка со щелочью или железа с соляной кислотой. В последнем случае образуется хлорид анилиния.

3. Восстановление нитрилов. Используют LiAlH 4:

4. Ферментатичное декарбоксилирование аминокислот:

5. Применение аминов.

Амины применяются в фармацевтической промышленности и органическом синтезе (CH 3 NH 2 , (CH 3) 2 NH, (C 2 H 5) 2 NH и др.); при производстве найлона (NH 2 -(CH 2) 6 -NH 2 − гексаметилендиамин); в качестве сырья для производства красителей и пластмасс (анилин), а также пестицидов.

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 10 класс. Профильный уровень: учебник для общеобразовательных учрждений; Дрофа, Москва, 2005г.;
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г;
  3. Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001;
  4. https://www.calc.ru/Aminy-Svoystva-Aminov.html
  5. http://www.yaklass.ru/materiali?mode=lsntheme&themeid=144
  6. http://www.chemel.ru/2008-05-24-19-21-00/2008-06-01-16-50-05/193-2008-06-30-20-47-29.html
  7. http://cnit.ssau.ru/organics/chem5/n232.htm

Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Обычно выделяют три типа аминов:

Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами.

Простейшим представителем этих соединений является аминобензол, или анилин:

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура аминов

1. Для аминов характерна структурная изомерия:

а) изомерия углеродного скелета:

б) изомерия положения функциональной группы:

2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия):

Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс —амин.

Физические свойства аминов

Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Остальные низшие амины - жидкости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин - маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре 184 °С.

Химические свойства аминов

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора. В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

2. Реакция с кислотами . Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

Горение амионов . Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

Применение аминов

Амины широко применяются для получения лекарств, полимерных материалов. Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).


N, напр. CH 3 NH 2 -метиламин, СН 3 NHС 3 Н 7 - метилпропиламин, (С 2 Н 5) 3 N - . Используются также названия, образованные прибавлением приставки " ", " " и т.д. к обозначению родового , например соединение типа С 2 Н 5 СН(NН 2)СН 2 СН 3 - 3-аминопентан. Многие ароматич. имеют тривиальные названия, напр. C 6 H 5 NH 2 - , СН 3 С 6 Н 4 NН 2 - и СН 3 ОС 6 Н 4 NН 2 - (соотв. от " " и от " "). Высшие алифатич. нормального строения иногда наз. по наименованиям радикалов жирных к-т, из к-рых были синтезированы, напр. , трилауриламин.

В ИК-спектрах характерные валентные колебания связей NH в р-ре наблюдаются для первичных алкиламинов в областях 3380-3400 см -1 и 3320-3340 см -1 ; для первичных ароматич. - две полосы поглощения в области 3500-3300 см -1 (обусловлены симметричными и несимметричными валентными колебаниями связей N-Н); для алифатич. и ароматич. вторичных амиов-одна полоса соотв. в области 3360-3310 см -1 и в области 3500-3300 см -1 ; третичные в этой области не поглощают. В спектрах хим. сдвиг составляет 1-5 м.д. Алифатич. в УФ и видимой областях не поглощают, ароматич. в УФ-спектрах имеют две полосы поглощения, обусловленные -переходами.

При нагр. с карбоновыми к-тами, их , хлор-ангидридами или первичные и вторичные ацилируются с образованием N-замещенных амидов, напр.: RNH 2 + СН 3 СООН -> RNHCOCH 3 + Н 2 О. реагируют в мягких условиях, еще легче - , к-рыми проводят в присут. , связывающего образующийся в р-ции НС1. При с дикарбоновыми к-тами, их эфирами или образуются . Ацилированные обладают слабыми основными св-вами.

Под действием HNO 2 алифатич. первичные превращаются в с выделением N 2 и Н 2 О, вторичные - в N-нитрозамины R 2 NNO. Третичные при обычной т-ре с HNO 2 не реагируют. Р-ция с HNO 2 применяется для алифатич. . При взаимод. первичных ароматич. с HNO 2 в кислой среде образуются : ArNH 2 + HNO 2 + НС1 -> АrСl - + 2H 2 O. В тех же условиях вторичные ароматич. превращаются в N-нитрозамины, третичные - в пара-нитрозопроизводные. Первичные алициклич. с HNO 2 образуют , что часто сопровождается сужением или расширением цикла (см. ).

Алифатич. первичные и вторичные взаимод. с С1 2 или Вr 2 , образуя N-галогензамещенные. Первичные с СОС1 2 образуют RNCO или дизамещенные (RNH) 2 CO, вторичные - тетразамещенные R 2 NCONR 2 . Первичные легко взаимод. с , давая азометины (), напр.:

При взаимодействии первичных и вторичных с образуются гидроксиэтильные производные, например: C 6 H 5 NH 2 + С1СН 2 СН 2 ОН -> C 6 H 5 NHCH 2 CH 2 OH + НCl. Чаще для синтеза этих же соед. применяют , леско реагирующий с в присут. небольших кол-в Н 2 О:

При использовании вместо NH 3 первичных или вторичных получаются вторичные и (или) третичные . Этот метод () распространен для произ-ва N-алкил- и N,N-диалкиланилинов. Разработан аналогичный способ получения взаимод. с NH 3 . Очень легко реагируют с NH 3 , образуя (см. ).

5. Р-ция амидов алифатич. и ароматич. карбоновых к-т со щелочными р-рами С1 2 , Вr 2 или I 2 с образованием первичных . При этом углеродная цепь укорачивается на один ().

6. Р-ции с участием алкил- и арилгалогенидов. К с алкилгалогенидами с послед. (см. )получают чистые первичные алифатические :

Арилгалогениды реагируют с NH 3 и с трудом, поэтому в пром-сти используют соед., в к-рых активирован сильными электроноакцепторными заместителями, чаще всего нитро- или сульфогруппами. Таким способом получают разл.

I. По числу углеводородных радикалов в молекуле амина:


Первичные амины R-NH 2


(производные углеводородов, в которых атом водорода замещен на аминогруппу -NH 2),


Вторичные амины R-NH-R"

II. По строению углеводородного радикала:


Алифатические, например: C 2 H 5 -NH 2 этиламин




Предельные первичные амины

Общая формула C n H 2n+1 NH 2 (n ≥ 1); или C n H 2n+3 N (n ≥ 1)

Номенклатура

Названия аминов (особенно вторичных и третичных) обычно дают по радикально-функциональной номенклатуре, перечисляя в алфавитном порядке радикалы и добавляя название класса - амин. Названия первичных аминов по заместительной номенклатуре составляют из названия родоначального углеводорода и суффикса - амин.


CH 3 -NH 2 метанамин (метиламин)


CH 3 -CH 2 -NH 2 этанамин (этиламин)




Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:


H 2 N-CH 2 -CH 2 -CH 2 -CH 2 -NH 2 1,4-диаминобутан.


Анилин (фениламин) C 6 H 5 NH 2 в соответствии с этим способом называется аминобензолом.

Гомологический ряд предельных аминов

СН 3 NH 2 - метиламин (первичный амин), (СН 3) 2 NH - диметиламин (вторичный амин), (СН 3) 3 N - триметиламин (третичный амин) и т.д.

Изомерия

Структурная изомерия


Углеродного скелета, начиная с С 4 H 9 NH 2:






Положения аминогруппы, начиная с С 3 H 7 NH 2:



Изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте:




Пространственная изомерия


Возможна оптическая изомерия, начиная с С 4 H 9 NH 2:


Оптические (зеркальные) изомеры - пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение (как левая и правая руки).


Физические свойства

Низшие предельные амины - газообразные вещества; средние члены гомологического ряда - жидкости; высшие амины - твердые вещества. Метиламин имеет запах аммиака, другие низшие амины - резкий неприятный запах, напоминающий запах селедочного рассола.


Низшие амины хорошо растворимы в воде, с ростом углеводородного радикала растворимость аминов падает. Амины образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организмах человека и животных из аминокислот (биогенные амины) .

Химические свойства

Амины, как и аммиак, проявляют ярко выраженные свойства оснований, что обусловлено наличием в молекулах аминов атома азота, имеющего неподеленную пару электронов.


1. Взаимодействие с водой



Растворы аминов в воде имеют щелочную реакцию среды.


2. Взаимодействие с кислотами (образование солей)



Амины выделяются из их солей при действии щелочей:


Cl + NaOH → СН 3 CH 2 NH 2 + NaCl + Н 2 O


3. Горение аминов


4CH 3 NH 2 + 9O 2 → 4СO 2 + 10Н 2 O + 2N 2


4. Реакция с азотистой кислотой (отличие первичных аминов от вторичных и третичных)


Под действием HNO 2 первичные амины превращаются в спирты с выделением азота:


C 2 H 5 NH 2 + HNO 2 → С 2 Н 5 OН + N 2 + Н 2 O

Способы получения

1. Взаимодействие галогеналканов с аммиаком


СН 3 Вr + 2NH 3 → CH 3 NH 2 + NH 4 Br





2. Взаимодействие спиртов с аммиаком



(Практически в этих реакциях образуется смесь первичных, вторичных, третичных аминов и соли четвертичного аммониевого основания.)

В продолжение темы:
Советы

Время чтения: 11 мин.Почки – это парный орган, имеющий тонкую структуру, поэтому малейшее изменение в нормальном течении каких-либо внутренних процессов приводит к заметным...

Новые статьи
/
Популярные